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Abstract 

The vibration of robot joint reducer is the main factor that causes vibration or motion error of robot system. To 
improve the dynamic precision of robot system, the cycloid ball transmission used in robot joint is selected as study 
object in this paper. An efficient dynamic modelling method is presented—lumped stiffness method. Based on 
lumped stiffness method, a translational–torsional coupling dynamics model of cycloid ball transmission system is 
established. Mesh stiffness variation excitation, damping of system are all intrinsically considered in the model. The 
dynamic equation of system is derived by means of relative displacement relationship among different components. 
Then, the natural frequencies and vibration modes of the derivative system are presented by solving the associated 
eigenvalue problem. Finally, the influence of the main structural parameters on the natural frequency of the system is 
analysed. The present research can provide a new idea for dynamic analysis of robot joint reducer and provide a more 
simplify dynamic modelling method for robot system with joint reducer.
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Introduction
The main inducement of vibration of high-speed robot is 
robot joint reducer, and therefore, the dynamic research 
for robot joint reducer is necessary. At present, domes-
tic and overseas scholars have made many deeply 
research on cycloid ball planetary transmission, includ-
ing structure principle [1, 2], engagement principle [3], 
mechanical property [4, 5], and transmission accuracy 
[6, 7]. However, the dynamic analysis of it has rarely 
been reported. This paper effectively establishes a simple 
dynamic model of cycloid ball planetary transmission, 
which matches with engineering  practice. After that, 
the characteristics of cycloid ball planetary transmission 
are analysed, and some improvement measures are pre-
sented with the purpose of reducing vibration and pro-
viding new ideas for robot dynamic analysis.

For the moment, the dynamic models of planetary 
gear mainly include purely rotational model [8, 9] and 

translational–torsional coupling model [10, 11]. In purely 
rotational model, the component’s torsional degree of 
freedom is only considered. The model is simple because 
there are few factors are considered. Translational–tor-
sional coupling model also includes the component’s 
translational degrees of freedom. Compared with purely 
rotational model, translational–torsional coupling model 
is more complex, and solving is more difficult. There-
fore, it is usually used in theoretical analysis. The result 
of Ref. [12] shows that when the ratio of support stiffness 
to mesh stiffness is greater than 10, the simplified purely 
rotational model and translational–torsional coupling 
model have some equivalence in the inherent character-
istics. For cycloid ball planetary transmission, the trans-
lational–torsional coupling model is established, and the 
inherent characteristic is analysed in Refs. [13, 14]. But 
the modelling methods are too complex and difficult, 
especially for a large degree of freedom dynamic system.

In view of that, this paper uses the effectively and sim-
ple modelling method—lumped stiffness method to 
establish the translational–torsional coupling model of 
cycloid ball planetary transmission. Then, the natural 
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frequencies and vibration modes are revealed by solving 
dynamic equations of system with the purpose of provid-
ing guidance for system design.

Lumped stiffness modelling
Structure
The structure of cycloid ball planetary transmission is 
shown in Fig. 1. Cycloid ball engagement pairs consist of 
hypocycloid groove in the left end face of planetary disc, 
epicycloid groove in the right end face of centre disc, and 
balls between two discs.

This paper uses cross-ball equal-speed mechanism 
as output structure for the requirements of robot joint. 
Cross-ball equal-speed mechanism is made up with the 
horizontal taper grooves in the right end face of plan-
etary disc, the horizontal taper grooves in the left end 

face of cross-disc, the taper grooves in the left end face 
of cross-disc, the taper grooves in the right end face of 
end cover disc, and balls among three discs. In this paper, 
cross-ball equal-speed mechanism is proposed, and cen-
tre disc is treated as output disc.

Lumped stiffness model
To simplify the dynamic model, an efficient dynamic 
modelling method—lumped stiffness method is proposed 
based on the lumped mass method. The basic thought of 
lumped stiffness method is as follows: first, the total mesh-
ing component force along axis direction will be obtained 
through mechanical analysis; second, the maximum defor-
mation of meshing point is considered as global deforma-
tion, and the component of global deformation along axis 
direction can be presented; finally, the ratio of total mesh-
ing component force to global component deformation 
along axis direction will be obtained. Obviously, the ratio is 
lumped stiffness. Compared with the traditional modelling 
method, the advantages of lumped stiffness method are as 
follows: nonlinear stiffness, time-varying curvature, and 
time-varying load have been integrated into the lumped 
stiffness model and not directly reflected in the dynamic 
model; the dynamic model will be established and solved 
easily. The lumped stiffness model of cycloid ball mesh-
ing pair and cross-ball meshing pair is, respectively, solved 
using lumped stiffness method.

The mechanical model of cycloid ball engagement 
pairs is shown in Fig. 2. Reference [4] shows that the total 
meshing force of y axis is zero, but the total meshing 
force of x axis exists. Therefore, only the lumped stiffness 
model of x axis is needed.

According to the mechanical model, the stiffness model 
of cycloid ball meshing pairs can be established as shown 
in Fig. 3. Figure 3a shows the traditional stiffness model 
of cycloid ball meshing pairs, (b) shows the lumped stiff-
ness model of cycloid ball meshing pairs. Obviously, the 
distribution of meshing force is complex. If the meshing 
forces are not effectively synthesized in modelling, the 
complexity of modelling will increase. Hence, lumped 
stiffness model is more convenient and simple compared 
to traditional stiffness model.

According to the thought of lumped stiffness method, 
the lumped stiffness of x axis is

(1)

Kmx =

(

∑Zm

i=1
Ni cosβ

)

|x

(δ1, δ2, . . . , δZm
)max cosβ|x

=

(−−→
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−−→
kmδ2 + · · · +
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(δ1, δ2, . . . , δZm
)max|x

=
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1
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∑
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2 θiFig. 1  The structure of cycloid ball planetary transmission. 1. Input 

shaft 2. Centre disc 3. Planetary disc 4. Cross-disc 5. End cover disc
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where θi represents the angle between the normal line of 
the i meshing point and the y axis. δm is the maximum 
deformation in theory, which corresponding to the spe-
cial location. δimax is the maximum deformation at any 
time during the operation. km is the meshing stiffness 
of single cycloid ball meshing pair. Zm is the number of 
ball. β is the half angle of cycloid groove. a is deformation 
coefficient, a = a′ · sin θi, a′ = δimax

/

δm, where sin θi is 
the average value of the corresponding change interval.

In addition, the torsional angular displacement of discs 
in cycloid ball meshing pair is generated by meshing dis-
placement. More importantly, the direction of meshing 
displacement and meshing force are identical. Hence, 
for the convenience of calculation, the torsional angular 
displacement is substituted by torsional linear displace-
ment along the direction of meshing force. The lumped 
torsional stiffness is substituted by lumped stiffness of x 
axis.

Fig. 2  Mechanical model of cycloid ball meshing pairs

Fig. 3  Stiffness model of cycloid ball meshing pairs. a Traditional stiffness model. b Lumped stiffness model
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Figure  4 shows the mechanical model of cross-ball 
meshing pair. The mechanical property of cross-ball 
meshing pair is analysed in Ref. [15], and its results 
proposed that the taper grooves along radial direc-
tion undertake most of the load, and the taper grooves 
perpendicular to radial direction hardly undertake 
the load. In this paper, three taper grooves along the 
radial direction are arranged on cross-ball equal-speed 
mechanism with the purpose of improving the bear-
ing capacity. Meanwhile, the taper grooves of side-
by-side arranged undertake equivalent load that is 
Q1xy = Q2xy = Q3xy,Q5xy = Q6xy = Q7xy

The force analysis shows that the total meshing force 
along x axis and y axis of cross-ball meshing pair is zero. 
Hence, there is no need to obtain corresponding lumped 
stiffness except lumped torsional stiffness. The solution 
thought is shown as follows: the maximum torsional 
angular displacement is divided by resultant moment. 
The stiffness model of cross-ball meshing pair is shown 
in Fig. 5. (a) shows the traditional stiffness model, and (b) 
shows the lumped stiffness model. Similarly, the distri-
bution of meshing force is complex. The meshing forces 
are effectively synthesized in the lumped stiffness model, 
which is beneficial for dynamic modelling.

Specifically, the lumped torsional stiffness of cross-ball 
equal-speed mechanism is

where R is the distribution circle radius of taper grooves; 
φ is the angle between the straight lines formed by the 
components and the cross guide rod in the equivalent 
mechanism of cross-ball equal-speed mechanism; e is 
eccentric distance of input shaft.

Translational–torsional coupling model
Dynamic model
To press close to the physical reality and avoid the com-
plexity of mathematical treatment, the following sim-
plifications and assumptions are made in the dynamic 
modelling:

a.	 Balls are regarded as elastic element because of the 
small quality;

b.	 Balls are pure rolling in the grooves, and the influ-
ence of friction force is ignored;

(2)
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∑
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Fig. 4  Mechanical model of cross-ball meshing pair
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c.	 The backlash can be eliminated by clearance screw 
mechanism, and the influence of backlash nonlinear-
ity is ignored;

d.	 The cross-disc is in a floating state, and the effects of 
cross-disc are not counted.

For the convenience of description of the relation-
ship between the components of cycloid ball planetary 
transmission, this paper adopts a servo reference sys-
tem of eccentric shaft (input shaft). Thus, the geometric 
centre of the input shaft is the coordinate origin. The 

coordinate system rotates at the speed of input shaft. 
According to the force analysis, a planar problem is con-
sidered where input shaft, centre disc, and planetary disc 
have two degrees of freedom: one translational around 
its own axis and one rotational along the x axis. End 
cover disc has one translational degree of freedom. In 
total, the model has seven degrees of freedom. Figure 6 
shows the translational—torsional coupling model of 
cycloid ball planetary transmission. The sequence num-
ber of the components in Fig.  6 is consistent with the 
sequence number in Fig. 1.

Fig. 5  Stiffness model of cross-ball meshing pair. a Traditional stiffness model. b Lumped stiffness model

Fig. 6  Translational–torsional coupling model of cycloid ball planetary transmission
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Relative displacement between components and dynamic 
equations
The relative displacement between components is clear 
because the system has fewer components. The specific 
contents are shown as follows:

1.	 Relative displacement between centre disc and plan-
etary disc	

2.	 Relative displacement between end cover disc and 
planetary disc	

3.	 Relative displacement between planetary disc and 
input shaft	

The differential equation of system can be obtained 
using Newton’s second law:

where Ji is the moment of inertia of component i 
(i = 1, 2, 3, 5); mi is the mass of component i (i = 1, 2, 3); 
ri is the pitch radius of component i (i = 1, 2, 3), r3 = r5; 
cix is the lateral brace damping coefficient of component 
i (i = 1, 2, 3); ciu is the torsion brace damping coefficient 
of component i(i = 1, 2, 5); Cmx is the meshing damping 
coefficient of cycloid ball meshing pair; Cw is the mesh-
ing damping coefficient of cross-ball meshing pair; Ti is 
the input torque of input shaft; To is the input torque of 
output disc(centre disc).

The formula (6) is arranged in matrix form:

(3)δ23 = x2 − x3 + u2 − u3

(4)δ53 = u5 − u3

(5)δ13 = x1 − x3 − u1

(6)
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J5

r
2
5
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(7)MẌ + (Cb + Cm)Ẋ + (Kb + Km + Kω)X = F

X = [x1,u1, x2,u2, x3,u3,u5]
T

M = diag
(

m1, J1/e
2,m2, J2/r

2
2 ,m3, J3/r

2
3 , J5/r

2
5

)

F = [0,Ti/e, 0,−To/r2, 0, 0, 0]
T

Kb = diag(k1x, k1u, k2x, k2u, k3x, 0, k5u)

Cb = diag(c1x, c1u, c2x, c2u, c3x, 0, c5u)

where X is generalized coordinate array; M is generalized 
mass matrix; F  is external excitation array; Kb,Km,Kω 
are support stiffness matrix, mesh stiffness matrix, and 
centripetal stiffness matrix; Cb, Cm are support damping 
matrix and meshing damping matrix. The elements Cmx 
and Cw in the matrix Cm have the following form:

Km is time-varying matrix because the lumped stiff-
ness Kmx is a time-varying element with the parameter θi . 
To solve the problem conveniently, the θi is converted to 
input shaft angle and the higher-order term is omitted.

where K  is short width coefficient of cycloid ball plan-
etary transmission.

The time-varying element of formula (10) is omitted. 
After the time-invariant Kmx is substituted into the mesh 
stiffness matrix, the dynamic equation of derivative sys-
tem can be obtained:

In addition, the mechanical model and stiffness mod-
elling method in this paper are different from Refs. [13, 
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14], but the mathematical model of cycloid ball planetary 
transmission is identical.

Natural characteristic analysis
Natural frequency and principal mode
The natural characteristic of cycloid ball planetary trans-
mission can be presented by solving the eigenvalue prob-
lem of derivative system. The eigenvalue problem of 
formula (11) is

where ωi is the i order natural circular frequency of 
system; φi is the i order principal mode of system, 
ϕi =

[

ϕ
(i)
1x ,ϕ

(i)
1u ,ϕ

(i)
2x ,ϕ

(i)
2u ,ϕ

(i)
3x ,ϕ

(i)
3u ,ϕ

(i)
5u

]

Without loss of generality, take the cycloid ball planetary 
transmission used in robot joint as an example, the dynamic 
characteristics are simulated and analysed. The cross ball 
equal-speed mechanism is arranged in front of the cycloid 
ball meshing pair in the prototype. In other words, end the 
cover disc is fixed and the central disc is used as output com-
ponent. The speed of input shaft is 1000 r/min; the meshing 
stiffness of single cycloid ball meshing pair is 2.87 × 107 N/m; 
the meshing stiffness of single cross-ball meshing pair is 
4.44 × 107 N/m, and the deformation coefficient a is 0.9978. 
Other basic parameters are shown in Table 1.

(12)(Kb + K
′
m + Kω)ϕi − ω2

i Mϕi = 0

By solving the formula (12), the natural frequencies and 
the principal modes of the system are obtained as shown 
in Table  2. All natural frequencies are single. The first-
order natural frequency is 0, which represents the rigid 
motion of system. The vibration modes corresponding to 
the other six-order natural frequencies are both transla-
tional vibration and torsional vibration. Furthermore, the 
approximate results of natural frequencies and princi-
pal modes of cycloid ball planetary transmission can be 
obtained when prototype data in this paper are plugged 
into the dynamic model of literature [13]. 

Parametric influence of natural frequency
It is necessary to analyse the change regulation of natural 
frequency relative to parameters of system with the pur-
pose of avoiding vibration. In this paper, based on trans-
lational–torsional coupling model, the natural frequency 
curves of each order are obtained by calculating eigen-
value problem with consideration of main parameters, as 
shown in Fig. 7, 8, 9 and 10.

As shown in Fig.  7, when the mass of the planetary 
disc is less than 2.5 kg, the fifth- and seventh-order nat-
ural frequencies decrease sharply, and other orders are 
weakly affected. When the mass of the planetary disc is 
bigger than 2.5 kg, all the natural frequencies have barely 
budged.

Table 1  Essential parameters of cycloid ball planetary transmission

Essential parameter Input shaft Centre disc Planetary disc End cover disc

Number of teeth Z 38 40

Mass/kg 0.854 0.924 2.185 1.447

Moment of inertia Ji/(kg m2) 2.69 × 10−4 6.69 × 10−3 1.44 × 10−2 1.19 × 10−2

Pitch radius ri/m 2.5 × 10−3 4.75 × 10−2 5 × 10−2 5 × 10−2

Radial stiffness kix/(N m−1) 5.85 × 108 5.85 × 108 5.85 × 108

Torsional stiffness kiu/(N m−1) 0 0 1 × 109

Table 2  Natural frequencies and principal modes of cycloid ball planetary transmission

Natural frequency fi/(Hz) 0 708.6 1309.8 2552.8 2705.3 5927.8 6614.9

Principal mode φi φ
(i)
1x

0 − 0.0479 0.1962 − 0.2455 − 0.1651 − 0.8094 − 0.6225

φ
(i)
1u

− 1 − 0.2214 0.2464 − 0.0562 − 0.0312 0.0562 − 0.052

φ
(i)
2x

0 0.0432 − 0.1024 − 0.3741 − 0.3328 0.6434 0.6365

φ
(i)
2u

1 − 2.8938 1.85 1.1826 0.8576 0.7569 0.8729

φ
(i)
3x

1 − 0.4340 2.3444 − 2.7125 − 1.7785 0.0847 − 2.2035

φ
(i)
3u

0 − 0.2674 − 0.2689 − 0.0445 − 0.1416 − 0.0581 − 0.0665

φ
(i)
5u

0 − 0.0608 − 0.0759 − 0.2846 0.3459 0.0029 0.0025
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As shown in Fig.  8, all the natural frequencies 
increase gradually with the increase in the eccentric, 
except for the first order. When the eccentricity is 
2.5  mm, mode transition appears between the fourth- 
and fifth-order natural frequencies. At the point of 

mode transition, the subtle change in parameters will 
lead to drastic change in natural frequencies. Hence, 
the sensitive points of parameters should be avoided 
in the design to avoid drastic change in transmission 
characteristics.

Fig. 7  The influence of planetary disc mass on the natural frequencies

Fig. 8  The influence of eccentric distance on the natural frequencies
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As shown in Fig. 9, the mesh stiffness has little effect on 
the first 5 orders natural frequencies of system. The sixth-
order and seventh-order natural frequencies increase 
with the increase in meshing stiffness. When meshing 
stiffness increases to 3 × 107 N/m, the sixth order natural 

frequency remains constant, but the seventh order natu-
ral frequency rises dramatically.

As shown in Fig. 10, the bearing support stiffness has 
certain influence on the natural frequencies, except for 
the first order. When the bearing support stiffness is less 

Fig. 9  The influence of meshing stiffness on the natural frequencies

Fig. 10  The influence of bearing support stiffness on the natural frequencies
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than 1 × 108 N/m, the natural frequencies increase obvi-
ously with the increase in bearing support stiffness, espe-
cially the fifth order; when the bearing support stiffness 
is greater than 1 × 108 N/m, the sixth- and seventh-order 
natural frequencies increase significantly. Modal transi-
tion phenomenon occurs in the fifth- and sixth-order 
natural frequencies when bearing support stiffness is 
1 × 108 N/m, which should be avoided in the optimiza-
tion design of system.

Conclusion
1.	 To improve the motion accuracy of robot system, 

the cycloid steel ball planetary transmission used in 
robot joint is selected as research object. An efficient 
dynamic modelling method is presented—lumped 
stiffness method. A translational–torsional coupling 
model is modelling, and the natural characteristics of 
system are revealed.

2.	 All natural frequencies of system are single. The first-
order natural frequency is 0, which represents the 
rigid motion of system. The vibration modes corre-
sponding to the other six-order natural frequencies 
are both translational vibration and torsional vibra-
tion.

3.	 The number of eccentricity distance and bearing sup-
port stiffness may lead to the modal transition phe-
nomenon. The sensitive points of parameters should 
be avoided as far as possible in the optimization 
design of system.
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