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Abstract 

This paper explores the dynamics of separable coupled rigid body systems, a special class of constrained rigid body 
systems. These are defined as two systems that interact with each other by forces of contact, resulting in a reduc-
tion in dimensionality and complexity. The mechanics and consequences of this reduction are investigated here. The 
basic hypothesis and an example of the reduction in two successive steps are formulated. A simple mechanical biped 
model is developed and analyzed in some details by both system theoretical concepts and simulations. The main 
contribution of this work is the novel extension to the known dynamics of constrained rigid bodies. The modular, 
versatile and systematic formulation presented here is computationally efficient and has many applications in the 
studies of the human neuro-musculoskeletal system, robotic systems and humanoids, as well as clinical and sports 
biomechanics applications. Computer simulations are provided to demonstrate the feasibility and effectiveness of the 
methodology.
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Background
Numerous works on constrained rigid bodies and multi-
body dynamics (MBD) have been done over the last few 
decades, including several well-known textbooks [1, 2]. 
Various algorithms were also developed in a wide vari-
ety of fields and application areas [3–7]. Technological 
advancement warranted the advent of improved formu-
lations with better computational efficiency [8]. Recent 
approaches such as the “divide-and-conquer” algorithm 
(DCA) were used to reduce the computational burden 
associated with many aspects of modeling, designing and 
simulating articulated multibody systems [7].

On the other hand, much less attention has been given 
to separable coupled rigid body mechanics, a particular 
class of constrained rigid bodies, as evidenced by the 
paucity of the literature in this area. Defined as systems 
where the physical coupling or interaction takes place 
primarily through the forces of contact [9], no gripping 
or holding occurs in such systems. In general, the two 

systems get separated when the forces of contact go to 
zero. It is well known that some human contact with cer-
tain machines or inanimate objects fall in this category. 
Specific examples include medical and sport-related 
interactions, such as rotating medical platforms with a 
human on the platform and humans on diving, skating 
or surfboards. This work extends the current body of the 
literature on constrained rigid body dynamics by propos-
ing a computationally efficient formulation for separable 
coupled systems. We address the rigid body dynamics, 
stability and control of separable rigid bodies within the 
scope of human or robot interaction with a subset of the 
above three classes of objects: medical platform, human 
on skateboard and human on surfboard.

While the dynamics of the three situations are some-
what similar and can be formulated along the lines dis-
cussed in this paper, the control problem and objectives 
are, however, different. For example, in the medical plat-
form case, the platform is independently moved, and the 
objective of the human or patient on the platform is to 
achieve postural stability, even though the exact mecha-
nisms of such control by the central nervous system 
(CNS) are not well understood. In the skatingboard situ-
ation, the human controls both subsystems—the human’s 
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and the board’s. The board does not exert any control 
of its own. In the surfboard scenario, the control is dis-
tributed between natural random forces that propel the 
board’s translational and attitudinal motion, and the par-
tial control the rider exerts to maintain stability, hold 
attitude relative to the waves for some not well-defined 
performance index and proceed with smooth transna-
tional motion or achieve some acceptable mixture of all 
these objectives. When the two subsystems are humans, 
the dynamics and the control problem become more 
involved and complicated, and this case will not be pur-
sued here.

Systems of connected rigid bodies with holonomic, 
non-holonomic and soft constraints can be adequately 
utilized to model robotic [10], humanoid [11] and loco-
motion systems [12]. The interaction of a robot with 
a moving platform or stable base can be represented in 
the equations of motion. This paper extends the previous 
body of work to theoretically formulate the dynamics and 
control of a multilink mechanical system in contact with 
a stationary or moving base of support. We will first for-
mulate the general two rigid body system dynamics and 
apply it to simple models of platform rotation and skate-
boarding. We will discuss the control for some simple 
and specific maneuvers.

A certain amount of dimensionality and complex-
ity reduction is achieved by replacing the dynamics of 
one subsystem with kinematics [13]. The equations of 
motion and procedures for their reduction are outlined. 
Stability is achieved by standard feedback technique to 
counteract the base movement. The biped is to main-
tain stance and postural stability under support platform 
disturbance [14]. The formulation here also allows com-
putational studies and further quantitative assessment 
of sensory and processing deficits in stability and bal-
ance for both healthy and injured humans [14, 15]. With 
regard to postural adjustments, it is hypothesized that 
humans use ankle strategy, hip strategy and combina-
tions of the two in order to maintain balance [16]. The 
formulation allows quantitative studies of such hypoth-
eses and the role of certain variables such as center of 
gravity, center of pressure, shear and normal support 
forces [17, 18]. It may also be relevant to studies of ves-
tibular deficit [19, 20].

This paper is structured as follows: The dynamics of the 
two-coupled separable systems is formulated in second 
section. Two examples, a biped model under rotational 
platform disturbances and a simple skateboard model, 
are formulated in third section. Stability and control are 
discussed in subsection. Simulations and comparisons 
are presented in fourth section. Discussions and con-
clusions are in fifth section followed by References and 
Appendices.

Coupled separable systems
For ease of comparison and reference we adopt the same 
notation and variable names as in Ref. [12]. The subsys-
tems are assumed to be planar and given in the Lagran-
gian formulation:

The forces Γ1 and Γ2 are the forces that couple the above 
two subsystems. It is assumed that these are the only con-
straint forces that appear in the equations above with

The algebraic constraint equations are, in general, func-
tions of all the degrees of freedom.

A block diagram of the system is shown in Fig. 1 which 
is described in more detail later. The system could also 
have been described by combining constraints and forces 
of constraint

The matrices I and B of the combined system are block 
diagonal. This latter representation is useful when one 
subsystem controls both subsystems. For the time being, 
the objective is to consider the subsystem that is being 
controlled, i.e., the first subsystem. This subsystem is 
being controlled through the forces Γ exerted by the sec-
ond subsystem. Further, it is assumed that the constraints 
C1 can be separated into two parts as shown in Eq. (5):

(1)
I1(Θ)Θ̈ + B1(Θ , Θ̇)Θ̇ − gG1(Θ) = W1U1 + [∂C1/∂Θ]Γ1

(2)
I2(Φ)Φ̈ + B2(Φ , Φ̇)Φ̇ − gG2(Φ) = W2U2 + [∂C

′

2/∂Φ]Γ2

Γ1 = −Γ2

(3)
C1(Θ ,Φ) = 0

C2(Θ ,Φ) = 0

(4)CC =
[

C ′
1, −C ′

2

]′

Γ = Γ1

Fig. 1  The planar one-segment biped and a particular planar plat-
form subsystem
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For the computation of the forces of constraint Γ1, it is 
necessary to differentiate equation (5) twice with respect 
to time. For ease of reference, the second derivative is 
symbolically reproduced here.

The main point of the above equation is that the influ-
ence of the controlling subsystem on the controlled dynam-
ics of the controlled subsystem is through Φ, Φ̇ and Φ̈. In 
practical terms, this means that the controlled subsystem 
must, through its sensory apparatus, measure the forces of 
constraint Γ and, from these measurements and possibly 
its actuators dynamics that may be sensitive to the plat-
form motion, extract the controlling subsystem’s positions, 
velocities and acceleration variables. This issue is further 
elaborated in the examples and in the control. Consider a 
mechanical multilinkage system with Z as an n-vector of the 
degrees of freedom, U as the input vector of ideal moment 
of force generators, Γ as the vector of constraint forces and

as a set of holonomic constraints governing the system. 
The equations of motion in the Z space are:

It is well known that when the constraints are main-
tained, the following equations describe the behavior of 
the system: When the constraints are satisfied, the forces 
of constraint are functions of the state Z and Ż and the 
inputs:

When the constraints are not in effect,

and

Suppose the above system can be dichotomized into a 
dominant subspace pd or simply d and an influenced sub-
space pi or simply i. The motion of the dominant part is 
influenced only minimally by the motion of the influenced 
part. Physical examples of this situation arise, for example, 
when a human is on a ship, in a vehicle, on a surfingboard 
in water or on a moving platform. Let the lower r degrees 
of freedom of Z be the dominant subspace represented by 

(5)C1 = C(Θ)+ D(Φ)

(6)
(∂C ′/∂Θ)(Θ̈)+ ∂[(∂C ′/∂Θ)(Θ̇)]/∂Θ[Θ̇]

+ (∂D′/∂Φ)(Φ̈)+ ∂[(∂D′/∂Φ)(Φ̇)]/∂Φ[Φ̇] = 0

C = 0

(7)I(Z)Z̈ + B(Z, Ż)Ż − gG(Z) = WU + [∂C/∂Z]Γ

(8)

C(Z) = 0

(∂C ′/∂Z)((I−1)I∂C/∂Z)Γ = (∂C ′/∂Z)((I)−1)

(−B− gG +WU)− ∂[∂C/∂Z(Ż)]/∂Z(Ż)

Γ = 0

C �= 0

vector Y, and an input set Ud. Let the remaining vector X 
of n −  r degrees of freedom be that of pi. The influence 
of the subspace d on subspace i is through the constraint 
forces that are active between the two subsystems Γid and 
the known motion β of the subspace d. The subspace i has 
its own control inputs Ud as part of the input vector U. The 
objective here is to arrive at the (reduced) dynamics of the 
subspace i with inputs Um, β and Γid.

Suppose the dynamics of the subspace d be described 
by a very large moment of inertia matrix Ir and inputs 
Ud that are very large in magnitude. This assumption 
allows reduction in the dynamics of the subspace d to the 
following

From the known motion β of the subspace d, the veloci-
ties β̇ and the accelerations β̈ can be computed. There-
fore, Eq. (9) can be replaced by

Without loss of generality, we can assume Ir is a diagonal 
matrix of dimension r, and the known accelerations are a 
vector of dimension r. The dynamics of the original sys-
tem of Eq. (7) can be written as that of two disjoint sub-
spaces except that the forces of support between the two 
subspaces Γid must be computed.

The equations of motion for this combined system of 
dynamic subspace i and the kinematic subspace d are for-
mulated here. Let Z1 be the vector of [X, β]. Let I1 be the 
two-block diagonal matrix. The upper block diagonal is 
the restriction of I to dimension n − r. The second block 
diagonal is the identity rxr matrix. The B1 matrix is the 
same as B with Z1. The same is true for G. The matrix W 
is the same except that all the elements in the last r rows 
are zero. Similarly, all the last r rows of ӘC′/ӘZ in Eq. (7) 
are set to zero. Let the latter matrix be called V.

However, vector C has remained intact and when it is 
differentiated with respect to time, the variables β remain 
in its last r columns. These last r columns of C′/Z do not 
affect the equations of motion for the combined system 
because the I1 matrix is block diagonal. Let us assume, 
for simplicity and ease of notation, that the only forces 
of constraint remaining in the system are Γid. The latter 
restriction is not major and can easily be lifted. Let V1 be 
a vector comprising of all the remaining kinematic vari-
ables that have been moved to the left side of the equation 
from I, etc., namely, the kinematic degrees of freedom β, 
and their first and second derivatives with respect to time.

With these clarifications, the equations for the com-
bined system are:

(9)Ir Ÿ = WrUr

(10)Ÿ = β̈

(11)
I1(Z1)Z̈1 + B(Z1, Ż1)Ż1 − gG(Z1)

= W1Ui + VΓid + V1(β , β̇ , β̈)
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From Eq. (11), one can derive the required forces of con-
straint Γid similar to Eq. (8). Once this last step is carried 
out, the original system is effectively reduced to dimen-
sion n − r.

A major step in the above development is that the com-
putation of forces of constraint has been extended to sys-
tems described by a combined system of kinematics and 
dynamics. The main difference between the all dynamic 
and the combined kinematic–dynamic systems is that, 
for the latter system, the forces of constraint are func-
tions of the kinematic accelerations, velocity and posi-
tions in addition to being functions of the state and the 
remaining inputs.

A more precise description of the system as 
described is given in Fig. 1. The upper part of the fig-
ure shows the dynamics of the biped, i.e., the i subsys-
tem. The lower part of the figure shows the dynamics 
of a special version of a d subsystem. The two subsys-
tems are primarily coupled through the four forces of 
constraint Γ. These forces are, in general, functions 
of the states and inputs of both subsystems. B.C. or 
Ui refers to biped controls. B.S. describes the biped 
dynamics. Integrators with respect to time are shown 
as 1/s. The variables W and dW/dt are, respectively, 
the position and velocity states of the biped. Γ is the 
vector of the forces of interaction between the plat-
form and the biped. The inputs to the platform are 
Ui. P.S. describes the platform dynamics. The angle of 
rotation of the platform is Φ. The compensator is of 
the PID type. The large gain is K and v1 describes the 
dynamic effect of the forces of constraint on the plat-
form support forces acting on the system.

Biped on a rotating platform
As an example, consider a planar biped with a two-seg-
ment feet on a platform as shown in Fig. 2. This biped is 
an example of the i subspace. The system angles, the iner-
tial coordinate system and the platform rotation angle: 
β—positive clockwise are shown.

The objective is to control the biped when it is dis-
turbed by a platform rotation. The biped has five degrees 
of freedom: the translation of the center of gravity of the 
body, and the three angles of the body and the two seg-
ments of the foot relative to the vertical gravity axis. Let 
the angle of rotation β of the platform be positive in the 
clockwise direction—measured from the horizontal axis. 
Let Γ be the four forces of contact with the platform—
two support forces and two shear forces

where the superscript means transpose.

Biped dynamics
The equations of motion in the W space are

The matrices and vectors appearing in Eq. (12) are given 
below.

Γ = [F2v ,G2v , F3v ,G3v]
′

(12)
J (W )Ẅ + B(W , Ẇ )Ẇ − gG(W ) = EU + [∂C/∂W ]Γ

Fig. 2  The one-segment biped with a two-segment foot and the 
platform support forces

The equation for B is

(13)J (ω) =















m1 +m2 +m3 0 −(m2 +m3)k1cos(ω3) m2k2cos(ω4) m3k3cos(ω5)

0 m1 +m2 +m3 (m2 +m3)k1sin(ω3) −m2k2sin(ω4) −m3k3sin(ω5)

−(m2 +m3)k1cos(ω3) (m2 +m3)k1sin(ω3) I1 + (m2 +m3)k
2

1
−m2k1k2cos(ω3 − ω4) −m3k1k3cos(ω3 − ω5)

m2k2cos(ω4) −m2k2sin(ω4) −m2k1k2cos(ω3 − ω4) I2 +m2k
2

2
0

m3k3cos(ω5) −m3k3sin(ω5) −m3k1k3cos(ω3 − ω5) 0 I3 +m3k
2

3















B(W , Ẇ ) =











0 0 (m2 +m3)k1ω̇3sinω3 −m2k2ω̇4sinω4 −m3k3ω̇5sinω5

0 0 (m2 +m3)k1ω̇3cosω3 −m2k2ω̇4cosω4 −m3k3ω̇5cosω5

0 0 0 m2k1k2ω̇4sin(ω4 − ω3) m3k1k3ω̇3sin(ω5 − ω3)

0 0 m2k1k2ω̇3sin(ω3 − ω4) 0 0
0 0 m3k1k3ω̇3sin(ω3 − ω5) 0 0










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The equation for the gravity vector is:

The coefficient matrix for the support force vector Γ is

The biped has three actuators:

The matrix E is:

referring to Fig.  1; the box B.S. represents Eq. (12). The 
outputs of this box are the acceleration and velocities to 
be integrated with respect to time.

Platform dynamics
The equations of the above system must be augmented 
with the dynamics of the platform. We assume the plat-
form rotates about its center of gravity and is large 
enough and the actuators that implements its rotation 
are large. For simplicity, the equation of motion for the 
platform is taken to be a second-order system with one 
actuator.

The box labeled P.S. in Fig.  1 represents the scalar 
transfer function

The variable v1 represents the moment of the forces of 
constraint

The variable v2 is the output of the controller: large gain 
proceeded by a PID controller. It is assumed that the out-
put of the platform subsystem is the angle of rotation of 
the platform, and the input to the platform subsystem is 
the desired angle of rotation β, i.e.,

G(W ) =











0
−m1

−(m2 +m3)k1sinω3

−m2k2sinω4

m3k3sinω5











∂C/∂W =











1 0 1 0
0 1 0 1

−k1cosω3 k1sinω3 −k1cosω3 k1sinω3

l2cosω4 −l2sinω4 0 0
0 0 l3cosω5 −l3sinω5











U = [u12,u13,u23]

E =











0 0 0
0 0 0
1 −1 0
−1 0 1
0 1 −1











(14)Ipβ̈ + Lpβ̇ + Kpβ = v1 + v2

Phi

Ud
=

1

(Ips2 + Lp − ps + Kp)

v1 = RpΓ

Ud = β

Standard control techniques can be applied to make the 
transfer function Φ/v1 small and the transfer function 
Φ/Ud close to identity. Our objective is to concentrate on 
the sensory and control aspects of the biped and, specifi-
cally, its postural stability in reaction to the platform dis-
turbance. We further assume that

and would like to reduce the dynamics of the system to 
that of the biped alone and with the known kinemat-
ics of the platform motion. Contrast with a person on a 
skatingboard where the forces of contact and support are 
used to control the board.

Platform kinematics plus biped dynamics
It is assumed that the platform actuator and moment of 
inertia are large enough such that influence of the forces 
of support on the platform dynamics is minimal and 
hence negligible. This assumption allows the motion 
analysis to be restricted to the kinematics of the platform 
motion of specific known trajectories.

The augmented system is characterized by six degrees 
of freedom:

The coefficient matrices in Eq. (7) must in turn be 
augmented:

The structure of each of these matrices is briefly 
described. The two-block diagonal matrix of inertia Ja is 
made up of J and Jp. The matrix Ba is the two-block diago-
nal matrix of B and a zero. The column vector of gravity 
Gr is augmented by a zero, because we assume the plat-
form is rotated about its center of gravity. The matrix Ea 
is extended by a sixth row of three zeros and one and by 
a fourth column of zeros except for the last element. This 
is to account for the platform acceleration as an input. 
The coefficient of Γ matrix will be augmented by a row of 
four zeros at the bottom. This merits some explanation. 
We are justified in taking this step since the dynamic 
equation of the platform does not depend on the forces 
of support. On the other hand when we differentiate 
the constraints with respect to β one gets a last row for 
ӘCa/ӘWa that is not zero. The importance of this last 
matrix is in the calculation of the support forces. Because 
Ja is a block diagonal matrix with zeros in the last row 
and last column, the denominator of the computation of 
Γ will not depend on β as discussed earlier. The depend-
ence of the forces of support on β, the angle of rotation, 
and its derivative and second derivative will be through 
the twice differentiation of the constraints with respect to 
time which leads to the direct dependence of the forces 

Φ = β

Wa = [W ,β]

Ja,Ba,Gra, ∂C/∂Wa, and Ea
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of support on the rotation angle, and its angular velocity 
and acceleration.

Stability and control
Stability can be achieved by control of the stiffness of 
agonist–antagonist pairs at joints and across the seg-
ments [21]. The simultaneous co-activation of agonist–
antagonist pairs of muscles at least by a pair at every 
joint achieves the same end. The co-activation produces 
sufficient position and velocity feedback to bring about 
stability in some vicinity of the equilibrium position. Lya-
punov stability can be utilized to establish the domain of 
attraction, and the platform disturbances are modeled as 
a perturbation.

Let Kd be a diagonal 5 × 5 matrix whose diagonal ele-
ments are, respectively, the stiffnesses at the joints and 
across the joints. Similarly, let Kp be a diagonal matrix 
of joint and across joint viscosities. Let �Θ be defined as 
follows:

The incremental work, ∆W, of the torques U =  [u12, 
u13, u23] on the system is

Thus, the input to the system will be

For the input torques, it is designed using the PD con-
trol as

Therefore, the effect of co-activation of the three torque 
pairs can be represented as

where

This matrix allows one to do quantitative analysis by 
selecting the joint and biarticular stiffnesses. The velocity 
feedback matrix Kkd is constructed by assuming as a diag-
onal matrix and is a fraction of the diagonal matrix Kkp.

The above analytically shows that the co-activation of 
a pair of agonist–antagonist actuators results in nega-
tive angular position and angular velocity feedback. The 
stiffness and viscosity, i.e., the position and the velocity 
feedback gains, can be programmed. Thus, the system 
is activated by three quantities: stiffness and viscosity at 
the three joints among the three segments of the biped in 

�Θ = [�θ1,�θ2,�θ3]
′

�W = −(�Θ)E′U ′

T = −E′U ′

U = KpEΘ + KdEΘ̇

T = −E′KpEΘ − E′KdEΘ̇ = −KkPΘ − KkdΘ̇

Kkp =





kp1 + kp2 −kp1 −kp2
−kp1 kp1 + kp3 −kp3
−kp2 −kp3 kp2 + kp3





Fig. 1. We consider the stability of the system about the 
vertical stance.

Simulations and comparison
When the planar biped is on a rotating platform as in 
Fig.  1, the effect from the platform to the biped is the 
centrifugal force. In this case we only consider the bal-
ance in the biped plane and assume that the motion per-
pendicular to the biped plane is fixed. Thus, the system 
can be described as

where Cen is the centrifugal force as

where r is the distance from the center of mass of the 
biped to the platform rotation axis.

For two-feet support, the geometric constraints of the 
biped are

From the rotating system, there is no translation resulting 
in ẍ = ÿ = 0. By taking double derivative of geometric 
constraint in Eq. [16], θ̈2, θ̈3 will be obtained. Substitute 
these into Eq. (15), five equations with five unknowns 
(θ̈1, F2v ,G2v , F3v ,G3v) can be solved.

For single-foot support, (16) does not exist resulting 
in θ̈2, θ̈3 as unknowns. At the same time, two of the four 
ground forces disappear when considering left or right 
foot supports the body. In this case, there are still five 
unknowns (θ̈1, θ̈2, θ̈3, F2v ,G2v) (left foot support, for right 
foot support it is (θ̈1, θ̈2, θ̈3, F3v ,G3v)) which can be solved 
from the five equations in (15).

The above analysis will be used in the following simu-
lations covering both single-foot support and double-
feet support balance with the platform rotation as 
disturbance. Parameter I refers to the moment of inertia 
in Kgm2 about the center of gravity of the link. Parameter 

(15)











eq1

eq2

eq3

eq4

eq5











= J (W )5×5











ẍ
ÿ

θ̈1
θ̈2
θ̈3











−

�

∂C

∂W

�

5×4







F2v
G2v

F3v
G3v







+ B(W , Ẇ )Ẇ − gG(W )− E





u12
u13
u23



+ β̇2
Cen = 0

Cen =











(m1 +m2 +m3)r
0

−(m2 +m3)(r + k1sinω3)k1cosω3

−m2(r + k1sinω4)k2cosω4

−m3(r + k1sinω5)k3cosω5











(16)C =

{

l2cosθ2 = l3cosθ3
l2sinθ2 − l3sinθ3 = d
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m refers to the mass of the link in Kg. Parameter l refers 
to the length of the link in m. Parameter k refers to the 
distance of the center of mass of the link from the lower 
joint. The system parameters are given as:

Case 1  Two feet are on the platform and not mov-
ing, while the platform has a fixed angular veloc-
ity as 1  rad/s. The torso is the main moving part with 
u12 = −400 * θ1 − 40 θ̇1, u13 = −400 * θ1 − 40 θ̇1, u23 = 0 
as the input using the negative position and velocity 
feedback [22]. The initial position is θ1 =  0, θ2 =  3π/4, 
θ3  =  5π/4. The simulation results show that the torso 
comes to the equilibrium position within 0.6  s as in 
Fig. 3a and the ground forces on the two feet also stabi-
lize fast as shown in Fig.  3b. The ground forces [23] on 
the right foot increase to the equilibrium point, while 
those on the left foot decrease due to the double-feet 
support position and the centrifugal force of the platform 

r = 3, l2 = 1, l3 = 1, k1 = 0.28,

k2 = 0.46, k3 = 0.46, I1 = 3.25, I2 = 1.4,

I3 = 1.4,m1 = 50,m2 = 12,m3 = 12, g = 10.

pointing from left foot to the right. The simulation results 
conform to the human hip control strategies in disturbed 
standing [24, 25] by moving the center of mass anteriorly 
as seen from the θ1 value in Fig. 3a. A bigger right foot 
vertical force G2v than the left foot G3v also proves that 
the center of mass moves to the right. This is also in line 
with the analysis in [21] that the effect of a horizontal dis-
turbance can be reduced when the torso bends to be par-
allel to the horizontal plane.

Case 2  In this case, the platform angular velocity is set 
as sinusoidal function sin((2  * π/2)  *  t). The simulation 
result is shown in Fig. 4 which illustrates the stabilization 
with the input and initial position the same as in case 1. 
The torso can follow the platform disturbance after about 
0.6 s, and the ground forces also balance with the process 
as in Fig. 4b. Since the centrifugal force constantly points 
from the left foot to the right foot, the hip adjusts the 
torso following the speed change of the platform to move 
the center of mass to the balanced point [24, 25] which is 
in the anterior side as seen from the sinusoidal wave of θ1 

Fig. 3  Simulation results for case 1. a Torso motion. b Ground forces
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upon zero line in Fig. 3a. This can be also seen from the 
bigger right foot vertical force G2v varying between 380 
and 540  N, and the combined horizontal force F2v and 
F3v keeps negative in the process due to the positive cen-
trifugal force direction.

Case 3  In this case only the right foot stands on the 
rotational platform to support the body, while the plat-
form has a fixed angular velocity as 1 rad/s. The right leg 
is left free, and the body starts from the position θ1 = 0, 
θ2 = π, θ3 = π. The negative position and velocity feed-
back are chosen as K = [300, 300, 200] and L = [50, 50, 
50]. The system stabilizes in about 0.8  s as shown in 
Fig.  5. The ground forces on the right foot also balance 
along the process, while the input torques for the three 
joints are illustrated in Fig.  5b. The horizontal platform 
disturbance is fully balanced by the horizontal ground 
force F2v, while the vertical ground force G2v mainly sup-
ports the body weight after the balance. The joint angles 
show that the torso moves the negative side (θ1 < 0) and 
both the legs move to the right (θ2, θ3 < π) of the vertical 
line. This conforms to the human ankle and hip strategy 

[26, 27] in disturbance standing in sagittal plane in which 
a double-segment inverted pendulum control strategy is 
used for the balance. When the body is balanced with the 
constant centrifugal force, the center of mass is moved 
to the opposite side of the centrifugal force direction as 
there is only one leg support and this is different to case 1 
with two-foot support.

Case 4  Following case 3, this case changes the platform 
angular velocity to sin((2 * π/2) * t). The simulation result 
is shown in Fig. 6 which illustrates the stabilization pro-
cess in which the body follows the platform disturbance 
in less than 1 s. Similar to case 3, the horizontal ground 
force F2v resists the platform rotation force, while the 
vertical ground force G2v supports the body weight. It 
can be seen from the vertical ground force change that 
between two big peak changes a small peak exists due to 
the free left leg balancing. Input torques between −  22 
and 18 N m are needed in the whole process. The results 
show similar strategy in the body balance with case 3 but 
with a sinusoidal process due to the sinusoidal balance. 
The body balances the center of mass between the left 

Fig. 4  Simulation results for case 2. a Torso motion. b Ground forces
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side of the vertical line and the right vertical position as 
seen from the joint angles in Fig. 6a.

Discussion and conclusions
The work presented here explores the dynamics of sepa-
rable coupled rigid body systems, a special class of con-
strained rigid body systems. Specifically, the dynamics 
of the two-coupled separable systems is formulated, and 
two examples, a biped model under rotational platform 
disturbances and a simple skateboard model, are ana-
lyzed for illustration and computationally simulated. 
The results of the simulations adequately validate the 
proposed theoretical models. The inertia forces, which 
resulted from the moving platform, can be decoupled 
and integrated into the body system as a disturbance, and 
the balance and stability of the body can be guaranteed 
with the stiffness and viscosity feedback control.

The main contribution of this work is the novel exten-
sion to the known dynamics of constrained rigid bodies. 
The modular, versatile and systematic formulation pre-
sented here is computationally efficient and has many 

applications in the studies of the human neuro-muscu-
loskeletal system, robotic systems and humanoids [28], 
as well as clinical and sports biomechanics applications. 
Examples include clinical settings of patients interfac-
ing with a rotating medical platform or machine, as well 
as the dynamics, stability and control of athletes on surf 
or diving boards. Further potential applications include 
quantitative studies on the balance and postural strate-
gies as related to balance and vestibular dysfunction and 
deficits. Simulation and animation studies of human 
motion in interface with stationary or moving bases of 
support could also benefit from the work presented here. 
Examples include some of today’s extreme sports, such 
as skateboarding and surfboarding, where balancing and 
control are critical for safety.

The current simulation used a simplified three-rigid 
body link model, where only hip joint control strate-
gies were included. Since the ankle strategy is typically 
adopted in human balance control modeling [21], a more 
complex musculoskeletal model that also includes the 
knee and ankle joints would allow for better biofidelic 
representation of human motion. Future work should 

Fig. 5  Simulation results for case 3. a Torso motion. b Ground forces and input torques
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also study the effect of the inertial forces of the moving 
base on the control strategies, as these forces are integral 
to physiological movement and human interaction with 
the environment. The motion of the moving base in this 
work was assumed as a simple rotation with constant 
velocity. Future work should consider more complex 
motions of the base, including translation, and a variety 
of speeds in order to simulate various real-life scenarios 
such as the interaction with an accelerating or turn-
ing vehicle. Future work would also benefit by including 
experiments with human participants for validating the 
simulation results and to extract more realistic motion 
control strategies.
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