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Abstract 

 Multiple robot systems have become a major study concern in the field of robotic research. Their control becomes 
unreliable and even infeasible if the number of robots increases. In this paper, a new dynamic distributed particle 
swarm optimization (D2PSO) algorithm is proposed for trajectory path planning of multiple robots in order to find 
collision-free optimal path for each robot in the environment. The proposed approach consists in calculating two local 
optima detectors, LODpBest and LODgBest. Particles which are unable to improve their personal best and global best for 
predefined number of successive iterations would be replaced with restructured ones. Stagnation and local optima 
problems would be avoided by adding diversity to the population, without losing the fast convergence characteristic 
of PSO. Experiments with multiple robots are provided and proved effectiveness of such approach compared with the 
distributed PSO.
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Background
The concept of multiple robot systems (MRS) began 
in the 1990s, in particular in works regrouping mobile 
robots, gathering objects [1] and robot colonies [2, 3]. 
Arai et al. [4] identified seven primary research themes in 
the MRS: biological inspirations, communication, archi-
tectures, location/cartography/exploration, transport and 
handling of objects, motion coordination and reconfigur-
able robots.

Multiple robot systems are well known by the synchro-
nization process and having better spatial distribution 
capability as compared to a single robot. This coordi-
nation addresses the problem of how teams of autono-
mous mobile robots can share the same workspace while 
avoiding interference with each other, collision with 
static obstacles and/or while achieving group motion 
objectives.

There are two basic approaches to solve the problem 
of multiple robot path planning: centralized and distrib-
uted. In the case of the centralized approach, each robot 

is treated as a composite system, and planning is done 
in a composite configuration space, formed by combin-
ing the configuration spaces of the individual robots. 
While in the case of the distributed approach, paths are 
first generated for robots independently and then their 
interactions are considered. The advantage of centralized 
approaches is that they always find a solution when there 
is one. However, the practical difficulty is the temporal 
complexity which is exponential in composite configura-
tion space. Distributed planners help generate robot tra-
jectories independently before using different strategies 
to resolve potential conflicts. But, they are incomplete 
in nature (probabilities of various and varied configura-
tions) and can therefore lead to blocking situations. This 
distributed approach can be applied to each robot taking 
into account the positions and orientations of all other 
robots at each point in time. Thus, the general problem 
is reduced to several versions of the planning problem 
for a single mobile robot in the presence of other robots 
which move in the presence of fixed obstacles. A trajec-
tory of the robot is then found by the search of a path 
from the start to the arrival thanks to the spatial–tempo-
ral configuration.

Open Access

*Correspondence:  Asma.Alaeare@nbu.edu.sa 
Cosmos Lab, ENSI, University of Manouba, 2010 Manouba, Tunisia

http://orcid.org/0000-0002-3805-6726
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-017-0062-6&domain=pdf


Page 2 of 15Ayari and Bouamama ﻿Robot. Biomim.  (2017) 4:8 

The control of the MRS becomes unreliable and even infea-
sible if the number of robots increases. In addition, the mul-
tiple robot path planning problem becomes more and more 
complex. The latter has been extensively studied since the 
1980s. Swarm behavior has proven its effectiveness in such 
problems thanks to interesting properties like robustness, 
flexibility and scalability. One of the successful optimization 
methods is particle swarm optimization (PSO) algorithm.

This paper proposed a novel approach to determine 
the optimal trajectory of the path for distributed multiple 
robots system using dynamic distributed particle swarm 
optimization (D2PSO), where each robot is considered to be 
a mobile, autonomous and physically independent agent.

The remaining part of the paper is outlined as follows. 
“Literature survey of particle swarm optimization use 
in MRS path planning” section covers briefly the latest 
works done in the MRS path planning search domain 
using different PSO variants. Formulation of the problem 
for multiple robot path planning has been elaborated in 
“Problem formulation for multiple robot navigation” sec-
tion. “Obstacle avoidance approach” section describes our 
obstacle avoidance approach. The classical particle swarm 
optimization, dynamic distributed double guided particle 
swarm optimization algorithm and dynamic distributed 
particle swarm optimization are described in the “Particle 
swarm optimization (PSO) for MRS path planning” sec-
tion. “Conclusion” section demonstrates the computer 
simulation for path planning of multiple robots.

Literature survey of particle swarm optimization 
use in MRS path planning
Since the inception of PSO [5, 6], several variants have 
been proposed to improve the performance of original 
PSO. The first versions of PSO for MRS were proposed in 
[7–9] to find a target in a given environment, and studies 
have demonstrated that the PSO algorithm has accept-
able performances in the searching task. In the study of 
Chakraborty et  al. [10], behavioral cooperation of the 
robots was realized through selection of alternative local 
trajectories for collision avoidance among teammates. 
In fact, he compared the performances using differential 
evolution (DE) with a PSO-based realization.

The authors present in [11] PSO-based technique for 
determining the optimal set of parameters for a sec-
ond PSO for collective robotic search. Particle swarm 
optimization technique was used to optimize the veloc-
ity parameters of robots in [9], to arrive at the shortest 
collision-free trajectory, satisfying dynamic constraints. 
A hybrid technique for the control of swarms of robots, 
based on particle swarm optimization (PSO) and con-
sensus algorithms, is presented in [12]. A MOPSO 
algorithm is utilized in [13] to generate trajectories for 
mobile robots that are working on the environments that 

the robots are working on and may be included danger 
sources. Darvishzadeh and Bhanu [14] present a frame-
work to use a modified PSO (MPSO) algorithm in a 
multiple robot system for search task in real-world envi-
ronments. Nakisa et al. [15] also proposes a new method 
(APSO) to create an efficient balance between explora-
tion and exploitation by hybridizing basic PSO algorithm 
with A-star algorithm. Nakisa proposes a method based 
on the multi-swarm particle swarm optimization (PSO) 
with local search on the multiple robot search system to 
find a given target in a complex environment that con-
tains static obstacles [16]. Rastgoo et  al. [17] proposed 
an algorithm named the “modified PSO with local search 
(ML-PSO)” applied in the exploration search space by 
adding a local search algorithm such as A-star to guar-
antee global convergence with a reduction in the search 
time. Allawi and Abdalla [18] used PSO combined with 
reciprocal velocity obstacles (RVO) method, in order to 
choose the best paths for robots without collision and to 
get to their goals faster. Das [19] proposed a new meth-
odology to determine the optimal trajectory of the path 
for multiple robot in a clutter environment using hybridi-
zation of improved particle swarm optimization (IPSO) 
with an improved gravitational search algorithm (IGSA).

A hybridization of improved particle swarm optimiza-
tion (IPSO) with differentially perturbed velocity (DV) 
algorithm (IPSO-DV) was also proposed by Das et  al. 
[20] for trajectory path planning of multiple robots in 
a static environment. Abbas et  al. discusses in [21] an 
optimal path planning algorithm based on an adaptive 
multi-objective particle swarm optimization algorithm 
(AMOPSO) for five robots to reach the shortest path. 
The algorithm PSO-NAV presented in Raffaele Grandi’s 
work [22] focuses on the possibility to drive a group of 
very simple robots from a starting zone to a final one 
inside a maze-like environment unknown a priori.

Problem formulation for multiple robot navigation
The problem formulation for multiple robot path plan-
ning is provided in this section. We consider a group of 
mobile robots to navigate by maintaining predefined geo-
metric shapes (line, column, triangle, etc.), controlling the 
location of each robot relative to the others. The geomet-
ric formation is established from predetermined initial 
positions, or even from random positions, and is main-
tained during the movement of the group. This navigation 
must ensure the avoidance of obstacles in the environ-
ment. This kind of navigation is useful in many coopera-
tion tasks such as moving a sports field, transporting or 
manipulating objects involving several mobile robots.

Multiple robot path planning problem is formulated 
by considering the set of principles using the following 
assumptions:
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1.	 For each robot, the current position (recent posi-
tion) and goal position (target position) is known in a 
given reference coordinate system.

2.	 Each robot is performing its action in steps until all 
robots reached in their respective target positions.

The following principles have been taken care of for 
satisfying the given assumptions.

1.	 For determining the next position from its current 
position, the robot tries to align its heading direction 
toward the goal.

2.	 The alignment may cause a collision with the robots/
obstacles (which are static in nature) in the environ-
ment. Hence, the robot has to turn its heading direc-
tion left or right by a prescribed angle to determine 
its next position.

3.	 If a robot can align itself with a goal without collision, 
then it will move to that position.

4.	 If the heading direction is rotated to the left or right, 
then it is required for the robot to rotate the same 
angle about its z-axis.

Obstacle avoidance approach
Plenty of algorithms for obstacle avoidance were men-
tioned in the robotic literature [23–25].

The obstacle avoidance approaches in MRS studies 
aim to find a path from an initial position S of a robot 
to a desired goal position G, with respect to positions 
and shapes of known obstacles O. The penalty function 
to be minimized by the planning algorithm consists of 
two parts. While the first one evaluates a length of the 
trajectory (or time needed to execute the trajectory), the 
second part ensures safety of the path (i.e., distance to 
obstacles).

To solve the latter problem, we propose a method 
which is able to detect collisions between the robot and 
an object  (figure  1). Let us define a repulsive function 
Fo in a region Z around an obstacle O. The region Z is 
defined as a circular disk centered at ro with radius ρO ; 
the parameter (ρO + ε) is the minimum distance that 
the robot should keep with respect to the boundary of 
the obstacle O. ε represents the minimum allowed dis-
tance between the robot and the obstacle. The repulsive 
function can then be defined out of Eq. (1), where 

(

x, y
)

 
is the position of the robot and 

(

rox, roy
)

 is the obstacle 
position.

Afterward, we define a Boolean function δij described 
in (2), where i refers to the ith robot and j refers to the jth 
obstacle in the environment.

(1)Fo =

√

(x − rox)
2
+

(

y− roy
)2

Robots must be able to handle limited sensing range 
for the obstacles through considering the latter function 
value in order to check collision (Fig. 1). 

Particle swarm optimization (PSO) for MRS path 
planning
Classic PSO
Particle swarm optimization (PSO) is a stochastic opti-
mization method for nonlinear functions based on the 
reproduction of social behavior developed by Berhart 
and Kennedy [5, 6] in 1995.

The origin of this method comes from the observations 
made during computer simulations on grouped flights 
of birds and fish [26]. These simulations highlighted the 
ability of individuals in a moving group to maintain an 
optimal distance between each other’s and to follow a 
global movement in relation to neighbors one.

To apply the PSO, we have to define a particle search 
space and an objective function to optimize. The prin-
ciple of the algorithm is to move these particles so that 
they find the optimum.

Each of these particles is provided with:

• • A position, that is, its coordinates in the definition set.
• • A speed that allows the particle to move. In this way, 

during the iterations, each particle changes its posi-
tion. It evolves according to its best neighbor, its best 
position and its previous position. This evolution 
makes it possible to fall on an optimal particle.

(2)δij =

{

1, if Foij ≤ ε

0 Otherwise

Fig. 1  Selection of next position (xi
next, yi

next) of robot i from current 
position (xi

curr, yi
curr) for avoiding collision with obstacle (ro, ρO)
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• • A neighborhood, that is, a set of particles that inter-
act directly with the particle, especially the one with 
the best criteria.

At every moment, each particle knows:

• • Its best position visited. The value of the calculated 
criterion and its coordinates are essentially retained.

• • The position of the best neighbor of the swarm that 
corresponds to the optimal scheduling.

• • The value of the objective functions because it is nec-
essary to compare the value of the criterion given by 
the current particle with the optimal value.

PSO is initialized with a group of random particles 
(solutions) and then searches for optima by updating 
generations. In every iteration, each particle is updated 
by following two “best” values. The first one is the best 
solution (fitness) the particle has achieved so far. This 
value is called pBest. Another “best” value that is tracked 
by the particle swarm optimizer is the best value obtained 
so far by any particle in the population. This best value is 
a global best and called gBest.

After finding the two best values, the particle updates 
its velocity and positions with following equations:

where w is the inertia coefficient which slows velocity 
over time; vn is the particle velocity; pn is the current par-
ticle position in the search space; pBestn and gBestn are 
defined as the “personal” best and global best; rand is a 
random number between (0, 1); c1 and c2 are the accelera-
tion coefficients. The stop condition is usually the maxi-
mum number of allowed iterations for PSO to execute 
or the minimum error requirement. As with the other 
parameters, the stop condition depends on the problem 
to be optimized.

D3GPSO: the dynamic distributed double guided particle 
swarm optimization algorithm
The D3GPSO introduced by Bouamama in [4, 27] is a dis-
tributed PSO. It is a group of agents dynamically created 
and cooperating in order to solve a problem. Each agent 
performs locally its own PSO algorithm.

Inspired by works in [1, 2, 4, 28], this algorithm uses 
the same principle as the D3G2A [2], and it consists on 
dividing the initial population into subpopulations and 
affecting each one to an agent. Each agent is also called 
specie agent and is responsible of a set of particles having 
their fitness values in the same range. This range is called 

(3)
vn+1 = wvn + c1 ∗ rand ∗ (pBestn − pn )

+ c2 ∗ rand ∗ (gBestn − pn),

(4)pn+1 = pn + vn+1.

FVR (for fitness value range), and it is the specificity of 
the specie agent SpecieFVR. The species agents cooper-
ate all by exchanging solutions to reach the optimal one. 
In fact, each one executes its own double guided PSO 
algorithm. The latter is double guided by the concept of 
template and the min-conflict heuristic. It is enhanced 
by new parameters: guidance probability Pguid; a local 
optimum detector LOD and a weight ε (used by species 
agents to calculate their own PSO parameters).

For the D3GPSO, we distinguish also a mediator agent 
to manage the communication between the species 
agents. This agent, called interface agent, can also create 
new species agents if necessary.

The local optimum detector LOD is an operator that we 
use in the PSO process. It represents the number of itera-
tions in which the neighboring does not give improve-
ment. If the best solution found by a specie agent remains 
unchanged for LOD generations, we can conclude that 
the particles are blocked in a local optimum. So, the best 
particle having this fitness value will be penalized. This 
variable is given by the user at the beginning of the opti-
mization process, but it is changed by each specie agent 
according to the attained fitness value.

D2PSO: dynamic distributed PSO for MRS path planning
In 2006, Hereford [9] has introduced a version of the PSO 
that “distributes” the motion processing among several, 
simple, compact, mobile robots, called distributed PSO 
(dPSO). Calculations were done “locally,” that is on each 
local robot. Simulation results showed that the dPSO 
appears to be a very good way of coordinating simple 
robots for a searching task operation. One of the most 
important advantages was that the algorithm appears to 
be scalable to large numbers of robots since the commu-
nication requirements do not increase as the number of 
robots is increased.

Although swarm intelligence approaches are attrac-
tive methods for robotic target searching problems, these 
strategies have two important disadvantages: First, they 
may get stuck on local optima. Second, they have slow 
progress in terms of fitness function in some situations 
(slow speed to converge to the target locations).

Inspiring from the D3GPSO described in [4, 27], we 
introduce two new parameters to the PSO: local optima 
detector for global best LODgBest and local optima detec-
tor for personal best LODpBest. The purpose of the lat-
est parameter is to count the number of successive 
iterations for which personal best and global best do not 
give improvement. Since these particles are unable to 
improve their pBest, they are no more contributing in 
finding the global optimal solution. This indicates that 
particles are saturated and require external thrust to 
boost their power. Dynamic distributed PSO (D2PSO) 
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provides thrust by heading particles toward potentially 
better unexplored regions which also add diversity to the 
search space. At the same time, when global best gBest 
is not improving for predefined number of successive 
iteration, it may be trapped in local optima and mislead 
other particles by attracting toward it. This also requires 
some external push that send trapped particle outside 
local optima position and mitigate its consequences. By 
this way, the stagnation and local optima problems would 
be avoided without losing the fast convergence charac-
teristic of PSO since the D2PSO would follow the PSO’s 
behavior for the rest of situations.

The flowchart for multiple robot path planning using 
D2PSO is presented in Fig. 2. 

Local optimum detector
LOD is a parameter to the whole optimization pro-
cess, and it will be locally and dynamically updated by 
each robot [1, 2]. If the personal best of the ith particle 
increases for a specific number of successive genera-
tions, we can conclude that the particle optimization 
sub-process is trapped in a local optimum, and so the 
LODpBest will increment, respectively, for gBest and 
LODgBest.

Fig. 2  Flow chart of multiple robot path planning using D2PSO
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Dynamic concept
Our work consists in implementing a dynamic distrib-
uted version of PSO. It is a multi-agent approach. It 
acquires its dynamic aspect from the agents that it uses. 
Indeed, they are capable to calculate their own parame-
ters on the basis of the parameters given by the user (Sp, 
Sg, ε). ε ϵ [0, 1].

Particles whose pBest is not improved for a prede-
fined threshold, i.e., LODpBest  =  Sp, would be restruc-
tured as pBest_temp given in (3). Respectively, for gBest, 
i.e., LODgBest = Sg, would be restructured as pBest_temp 
given in (4).

where i1  =  random (1, M), M is the population size, 
i2 = random (1, size(gBest_hist), and gBest_hist presents 
the historical values of gBest.

(5)

pBest_tempi = pBesti1 +
i1

i1 + i2
∗ (gBest_histi2 − pBesti),

(6)gBest_tempi = min(pBest_tempi, gBesti),

Template concept
The concept of template was introduced by Tsang [29]. 
In our approach, inspired from D3GPSO [27], we will 
attach particles whose pBest is not improved for succes-
sive generations to a template called templatepBest and 
respectively particles whose gBest is not improved for a 
predefined threshold to a template called templategBest. 
Hence, the new robot path will be influenced by the best 
reached fitness since each robot would perform its own 
PSO algorithm guided by template concept [29].

As mentioned in [27], we define in (8) and (9) the 
parameters α and β which are function of templatepBest 
and templategBest. Their worth is that they articulate the 
probability for a particle to propagate its knowledge. This 
confirms the fact that the best particles have more chance 
to be pursued by others.

(7)α = templatepBest/
(

templatepBest + templategBest

)

(8)β = templategBest/
(

templatepBest + templategBest

)

Fig. 3  Obstacle avoidance of 10 robots moving in the same environment (rectangles = initial positions, stars = goal positions)
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Implementation and experiments
Experiment configuration
The multiple robot path planning algorithm is imple-
mented in a simulated environment. The simulation is 
conducted through programming in C language on a 
Pentium microprocessor, and robot is represented with 
similar soft-bots of rectangular shape with different path 
color code. The robot is self-contained in terms of power. 
It is mobile; it may be limited in terms of steering radius 
and speed, but it is mobile.

Predefined initial location and goal location for all the 
robots are assigned. The experiments were conducted 
with three different radius obstacles and assigned same 
velocities for each robot at the time of the program run.

The objective function used in the simulation studies 
was a spherical function given by:

where (xi, yi) is the position of the both and (xtarget, ytarget) 
is the position of the target point. The latter is given in 
Table  1. The spherical function is chosen because it 
approximates the expected dissipation pattern of chemi-
cals, heat, etc., that would be emitted by real-world tar-
gets [9].

We have applied the distributed PSO and the proposed 
D2PSO to the same environment. Population size M was 
fixed to 150 and then to 300.

We used the following parameters: inertia weight 
w =  1.0, damping ratio wdamp =  0.99, personal learning 
coefficient c1 =  1.5, global learning coefficient c2 =  1.5, 
Sp = 3, Sg = 3.

We did the simulations in an environment with variant 
number of obstacles. Table 2 gives their positions.

Experiment results and analysis
We made several simulation runs. We have run the 
program for 3, 5, 7 and 10 robots with different initial 
and target points, for 200 iterations. We evaluated the 

(9)f = (xi − xtarget)
2
+ (yi − ytarget)

2,

effectiveness of the algorithm by comparing the path 
lengths obtained from the basic distributed PSO and the 
D2PSO, ensuring of course the non-collision with the 
static predefined obstacles (Figure 3).

The overall effectiveness of the proposed algorithm 
is shown in Table 3. It confirms that it outperforms the 
dPSO with respect to the performance metric, i.e., the 
path length, for different number of robots (figures 4 and 
5).

Table  4 represents the same previous simulations for 
M = 300 particles. It is clear that we obtain shorter paths 
for each robot (Figs. 4, 5).

Figures  6 and 7 show that the convergence of the 
objective function to the best value is faster with D2PSO 
approach than dPSO one.

Since restructuring both pBest and gBest depends on 
the number of robots and the population size, we deduce 
that each time we increase the number of bots, we obtain 
better values of the objective function, and respectively 
when increasing the population size M.

After that, we have added more obstacles and made 
some changes in initial and target states. We obtained 
Figs. 8 and 9 for fixed number of robots.

Moreover, the result of the experiments performed is 
presented in Table  5 in the term of another performance 
metric which is the executed time to reach the best solu-
tion, i.e., the robot’s shortest path. We run the program 
with two different values of the population size M (Table 6). 
This time, the execution time would necessary be bigger 

Table 1  Initial and target points used in simulation

Initial point x y Target point x y

1 − 2.41 − 3.08 1 5.22 6.22

2 − 1.72 − 0.47 2 6.10 6.70

3 − 1.88 − 3.48 3 4.75 6.59

4 − 2.53 − 0.95 4 6.09 6.05

5 − 1.19 − 2.34 5 5.28 7.18

6 − 2.81 − 2.39 6 5.23 5.78

7 − 1.44 − 1.03 7 6.17 6.99

8 − 2.09 − 3.21 8 4.61 6.41

9 − 2.40 − 0.92 9 6.30 6.13

10 − 0.21 − 2.59 10 5.03 7.21

Table 2  Description of obstacles present in Fig. 3

Obstacles Position of obstacles

1 (1, 1.5)

2 (4, 3)

3 (1.5, 4.5)

Table 3  Path lengths for M = 150

Path length
M = 150

Distributed PSO D2PSO

Robot1 12.2489 12.1666

Robot2 11.0501 10.6690

Robot3 12.461 12.1351

Robot4 11.1966 7.8620

Robot5 11.6496 8.1610

Robot6 12.3214 9.1203

Robot7 9.4512 7.6291

Robot8 10.9221 9.7347

Robot9 11.3312 8.5025

Robot10 12.3411 11.7196
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as the number of particles increases. Table  5 and Fig.  10 
confirm that D2PSO outperforms the remaining algorithm 
with respect to the cited metric for different robots.

In addition, we have observed, for each algorithm, the 
number of iterations each robot takes to find its shortest 
path. Since the execution time is lower for D2PSO than 
dPSO, number of iterations would consequently be less. 
Table 7 confirms the latter observation.

Conclusion
The problem of multiple robot motion planning focuses 
on computation of paths of different robots such that 
each robot has an optimal path, and so the overall path 
of all the robots combined is optimal. Many approaches 
have been proposed for solving multiple robot path plan-
ning problems. Particle swarm optimization algorithm is 
one of the successful optimization methods in this area. 
This paper has presented a successful improvement to 
the PSO algorithm. D2PSO ensures diversity to stagnated 
particles in such a manner that they move to better and 
unexplored regions of search space. In addition, it does 
not disturb the fast convergence characteristics of PSO 

Table 4  Path lengths for M = 300

Path length
M = 300

Distributed PSO D2PSO

Robot1 12.2421 12.1664

Robot2 11.0449 10.6679

Robot3 12.4518 12.134

Robot4 11.1951 7.8591

Robot5 11.6412 8.1257

Robot6 12.2114 9.1098

Robot7 9.4232 7.6011

Robot8 10.9119 8.6738

Robot9 11.1931 8.4381

Robot10 12.3391 10.6956

Fig. 4  Optimal path of 3 robots using D2PSO
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by keeping the basic concept of PSO unaffected. Experi-
mental results show that our approach performs better in 
escaping local optimum and proves that applying D2PSO 

to multiple robots path planning problem is practical and 
efficient for large number of robots in environments with 
variable obstacles.

Fig. 5  Optimal path of 5 robots using D2PSO
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Discussion and future work
The main contributions of our research are: (1) finding 
optimal paths of mobile robots moving together in the 
same workspace, (2) proposing to use the PSO evolution-
ary algorithm and (3) ensuring collision-free trajectories.

However, there are still some issues and improve-
ments to be addressed in our future work. First, 
dynamic obstacles, unknown environment, obstacles’ 
shapes and collision avoidance should be studied. In 
this paper, both the environment and obstacles are 

Fig. 6  Best cost variation for each robot when applying D2PSO (#robots = 5)
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static relative to the robots, which is applicable in par-
ticular cases. In the future, work will be carried out 
using dynamic obstacles during the multiple robot path 
planning process. Second, the inter-robot collision 

should be considered in future experiments. The task 
planning process for MRS would be also studied in 
order to ensure best coordination.

Fig. 7  Best cost variation for each robot when applying dPSO (#robots = 5)
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Fig. 8  Optimal paths of 7 robots using D2PSO with five obstacles
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Fig. 9  Optimal paths of 7 robots using D2PSO with three obstacles

Table 5  Execution time for M = 150

Time (s)
M = 150

Distributed PSO D2PSO

Robot1 40.569334 39.676484

Robot2 48.224949 30.275881

Robot3 43.248937 32.953980

Robot4 45.283051 30.535676

Robot5 45.653371 35.419047

Robot6 48.689387 30.173998

Robot7 49.968918 39.833665

Robot8 40.314716 30.654208

Robot9 40.546997 30.701435

Robot10 40.272204 31.146030

Table 6  Execution time for M = 300

Time (s)
M = 300

Distributed PSO D2PSO

Robot1 45.103684 44.720177

Robot2 55.595825 35.589437

Robot3 48.550160 37.941275

Robot4 51.812619 35.380362

Robot5 49.960134 40.247571

Robot6 50.862109 35.323138

Robot7 55.566426 45.552622

Robot8 45.396125 35.484535

Robot9 46.271805 35.422918

Robot10 44.100084 37.159384
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