
Deng et al. Robot. Biomim. (2016) 3:23
DOI 10.1186/s40638-016-0056-9

RESEARCH

A motion sensing‑based framework
for robotic manipulation
Hao Deng1,2, Zeyang Xia1,2*  , Shaokui Weng1,2, Yangzhou Gan1,2, Peng Fang1,2 and Jing Xiong1

Abstract 

To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human.
This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system.
Motion sensing technology, which enables human–machine interaction in a novel and natural interface using ges-
tures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipula-
tion. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes
gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a
general hardware interface layer was also developed in the framework. Simulation and physical experiments have
been conducted for preliminary validation. The results have shown that the proposed framework is an effective
approach for general robotic manipulation with motion sensing control.

Keywords:  Human–machine interaction, Motion sensing, Gesture recognition, Robotic manipulation

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
Robots have found an increasingly wide utilization in all
fields, and they move objects with blurring speed, repeat
performances with unerring precision and manipulate
tasks with high dexterity. Robots have long been imaged
as mechanical workers, cooperating with or even replac-
ing people [1]. Yet the situation is, to data, robots have
been very successful at manipulation in controlled envi-
ronments such as in a factory or laboratory. When out-
side of the controlled environments, they normally
perform tasks when operating with human [2]. Although
the latest robotic researches would handle the situations
with a sophisticated sensing and intelligent system [3],
most robots are still under a typical “teach-pendant oper-
ating” pattern to get knowledge about current environ-
ment configurations.

Typical teach-pendant is a handheld control unit
equipped with buttons or joysticks to manually send
the robot to desired positions, a screen to display
robot states, and a large red emergency stop button. In

teach-pendant process, operators need to stand in certain
nearby area, hold the control unit and move robot manu-
ally; meanwhile, special focus should be paid on to avoid
collision and identify the arrival at targeted position, as
shown in Fig. 1a. The whole procedures require operators
with high technical skills training, and high hand–eye
coordination; otherwise, it would be so extremely easy to
lead serious collision damage to operators or equipments.
Differing from the active teach-pendant operation mode,
“lead-by-the-nose” is a passive technique, in which, con-
troller will de-energize the robot joints and allow users to
drag and move the robot by hand to any desired positions
or even record paths [4], as shown in Fig. 1b.

However, both techniques mentioned above are hard-
ware dependent and controller specific, which definitely
increase learning and training costs when adapting to
new types of robotic system. In final analysis, all these
issues come down to a matter of lacking user-friendly but
general human–machine interaction interface. Recent
researches have shown that the motion sensing tech-
nology enables human–machine interaction in a novel
and natural interface using gestures or spoken com-
mands. And latest revolutionary motion sensing devices,
like Kinect [7] and Leap Motion [8], are boosting wider

Open Access

*Correspondence: zy.xia@siat.ac.cn
1 Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences, Shenzhen, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0075-7949
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-016-0056-9&domain=pdf

Page 2 of 10Deng et al. Robot. Biomim. (2016) 3:23

applications of motion sensing technology from gaming
to robotics [9, 10].

Some approaches have put forward that the motion
sensing data can control the action of a robot, where
robot will initiate human movements, or learn actions
from human [11], and this motion sensing is usually at
the crossroad between gesture recognition and skeleton
tracking. In practice, sometimes, we only interested in
the pose of hand, which can be used to directly drive the
end effector of a robot, or in some other cases, we may
also need to command robot in a jointed mode which
requires joint angles date captured from skeleton track-
ing. In previous studies, numbers of works have been
proposed on use of motion sensing input devices for
robotic applications [12].

However, most of them were focusing on specific cases,
which usually integrated a certain type of sensors, Kinect,
Leap Motion, or et al., for a targeted robot system config-
uration. And there is no systemic solutions published for
general motion sensing-based robotic manipulation. So

our objects in this research are: (1) providing a modular
and easy plugin-and-play framework to connect between
any available motion sensing input devices and robotic
systems. (2) Simplifying the hardware integration by pro-
posing a driver update pattern.

The rest of this paper is organized as follows. “Frame-
work architecture design” section describes the architec-
ture design of our proposed framework. “Motion sensing
commands” section shows how to create the motion
sensing commands for robotic manipulation. “Frame-
work core” section depicts the control core for robotic
manipulation. “General hardware interface” section
depicts realization of hardware interface for hardware
abstraction. “Implementation and experiments” section
demonstrates implementation and experiments of the
proposed framework. “Conclusion” section summarizes
our study. And “Discussion and future work” section
starts discussions about this research and works out the
future work.

Framework architecture design
For motion sensing manipulation, the proposed frame-
work should be the characteristic of: (1) skeleton tracking
or gesture capture, especially the poses and joint angles
in the chosen sensing area. (2) Mapping from human
movements to robot actions. (3) Compatibility with
varied hardware, including motion sensing devices and
robots.

To meet these requirements, our design philosophy of the
framework is to develop as distributed and modular as pos-
sible, so that it could be hardware independent and easily
configured. The foundation of our framework is laid on the
powerful robot operation system (ROS) [13], which adds
value to the development of robotics projects and applica-
tions with open-sourced packages, libraries and tools.

Therefore, the framework is designed in a three-layer
structure, which comprises the motion sensing layer,
ROS foundation and hardware interface layer, as given
in Fig. 2. This three-layer structured framework is tar-
geted to provide an effective approach for general robotic
manipulation.

The first motion sensing (MS) layer provides drivers
for sensors and manages the raw commands captured
from skeleton tracking and gestures. Note that the devel-
opment of this layer is based on ROS communities and
official SDK, while our main contribution is to design the
integration of drivers and the distributed and modular
designed motion sensing service and sequencer, which
allows users to request poses or joint angles data from
motion sensing input devices more friendly. Existing ser-
vices can be modified, or new services can be added very
easily in ROS layer to adapt for the requirement of cus-
tomized manipulation task.

Fig. 1  Typical operation patterns. a Teach-pendant operation with
hand–eye coordination and fully focus [5] and b “lead-by-the-nose”
operation for paint spraying [6]

Page 3 of 10Deng et al. Robot. Biomim. (2016) 3:23

The ROS foundation layer is at the heart of the pro-
posed framework, which can be called the framework
core. Functionally, this layer can be divided into four
modules, which are the information management mod-
ule, model management module, manipulation control
module and visualization module. Developed on ROS
platform, this layer creates the middleware between
motion sensing devices and the real robots.

The hardware interface (HW) layer is a hardware com-
munication interface that talks and listens to the control-
ler of physical robots. With communication protocols, it
can build a service-request mode between the framework
and the actual robots. The main advantage of this layer
is, based on ROS industrial, the integration can be estab-
lished on any hardware with communication protocol
supported.

Motion sensing commands
In this section, we will focus on how to understand the
intent of the operator and create motion sensing com-
mands for robotic manipulating. Even though robots can
be operated in end effector mode and joint mode, for
motion sensing commanding, end effector mode will be
more compatible regardless of different DOFs configura-
tion. In our current study, we only focus on tracking of
hand articulations.

3D tracking of hand articulations
Tracking articulated objects is an interesting and hot
research problem, and latest revolutionary motion
sensing devices are boosting wider applications of this
technology from gaming to robotics. Among them,
3D tracking of human hands is the most efficient and
straightforward. We can acquire the 3D position, orienta-
tion and full articulation of a human hand. And in ROS
communities, MIT Kinect demos [14] provided purely
hand and finger detection, and Leap Motion SDK [15]
also supported for hands skeleton tracking, as shown in
Fig. 3.

Here we defined a universal hand model for tracking as
given in Fig. 4. All motion sensing devices will be capa-
ble of tracking the hand palm and provide the follow-
ing information: hands numbers, hand types, position
of each hand palm, and direction of each hand palm. All
the information is standardized in a ROS message type
motion_sensor/hand.msg as defined in Table 1 and can be
published from motion sensing service in a given topic /
motion_sensor/hand.

Based on the device drivers from ROS communities,
we modified the original interfaces and remapped the
data pipelines into the defined message type. Note that in
our framework not all official functions of the devices are
supported, but it is enough for motion sensing robotic

Fig. 2  Framework architecture designed. Three main functional layers, the MS-motion sensing layer, ROS layer and the HW-hardware layer

Page 4 of 10Deng et al. Robot. Biomim. (2016) 3:23

manipulating, and also this capability can be easily
extended. In this layer, a motion sensing and sequencer
module was developed, which will bind multiple motion
sensor input, standardize and integrate with ROS layer.
As whole framework is designed modularly, when
adopted new sensors, this layer can be packaged and
installed as driver and later easily updated for new fea-
tures over the air using the built-in rosinstall mechanism.

Motion sensor data processing
Even though numerous palm pose can be captured and
acquired from motion sensing devices, there are still
some theoretically interesting problems, space registra-
tion, sensor data filtering, and dynamic response.

To satisfy quick trajectory tracking, the hand space
{G}, motion sensing device space {O} and the robot
space {R} need to be mapped to realize registration.
Since we have no additional optical measuring device
to build this transformation relationship during opera-
tion, we make full use of dynamic time warping (DTW)
to calculate every pose distance between two hand ges-
tures to measure the minimal motion similarity [16]
between end effector of the robot and the hand. Thus,
we avoid building the transformation relationship
between coordinate system, but try to map the dynamic
distance matrix of hand palm in motion sensing device
space {O} to distance matrix of end effector in world
space {W}, as shown in Fig. 5. Source motion created by
hands will be speed-reduced in a given ratio and imi-
tated by the robot.

Motion sensing devices are so acute that manipulation
operation may easily fail due to sensor noise or natural
hand shaking. In Fig. 6, the plotted hand palm position
in z direction from raw data shows a slight fluctuation,
which will definitely lead robot to tremble in the cor-
responding axial direction. Additionally, uncontrolled
hand movement, especially when hand moves into and
departs from the sensing area, may also cause abnormal
action of the robot. When choosing the filter, we value its
response performance. So the simplest way we used is a
mean filtering. The red line in Fig. 6 is the result of sensor
data after filtering, in which the queue size is set as 10.

Fig. 3  3D tracking of hands with position, orientation and full articulation. a Two hands tracking from Kinect, displayed in Rviz and b hand skeleton
tracking from Leap Motion, displayed in LeapCommandCenter

Fig. 4  Tracking model definition. Hand palm tracking in our current
motion sensing framework

Table 1  Standardized message definite for hand informa-
tion

motion_sensor/hand.msg

std_msgs/Header header

uint32 hands_num

string[] hand_typer

geometry_msgs/Point position

geometry_msgs/Quaternion orientation

Page 5 of 10Deng et al. Robot. Biomim. (2016) 3:23

And for uncontrolled hand movement, we set an optimal
threshold to ignore huge pose changes in a short time.

However, in preliminary experiments, we found out
that robot action would wait for a noticeable delay when
the sensor is triggered, as shown in Fig. 7. Theoretically,
this delay mainly comes from the sensor SDK algorithm,
data filtering and mapping from gestures to robot com-
mands. For Kinect, the algorithm delay is recorded and
estimated to be five frames, and also the first and last 10
frames of the raw data were ignored by setting the opti-
mal threshold for huge pose changes in a short time. For
data filtering delay, it is difficult to strike the right balance
between the stability and dynamic response.

In our framework, max rate of raw sensor data acqui-
sition is in 30 frames/s. The real-time computation of
data filtering and coordinate mapping is costly. Motion
sensors will never be real-time responsive, and it is very

important that the code is running the data read from
the sensor and the position command asynchronously. In
our study, we took stamp.nsecs in the published sensor
message to compare with robot states and drop outdated
frames until the action is done.

Motion sensing commands publish
After getting intents of operator, the layer need tell the
information to robot controller. Since motion sensing
commands are specifically 6D-pose of the hand palm, the
information is managed in geometry_msgs/Pose message
type and published to global /tf.

The relationship of nodes and topics in MS layer can be
created using rqt_graph tool as shown in Fig. 8.

Framework core
As the framework core, ROS foundation layer consists
of four modules and plays as the middleware combining
all software and hardware together. On functional level,
those modules are responsible for information manage-
ment, model management, manipulating control and
visualization.

Information management
In a typical ROS system, the roscore process acts as the
central manager of all nodes and establishes point-to-
point communication between nodes in topics or ser-
vices paradigms. A ROS topic can publish and subscribe
messages to certain topics, resulting in building a uni-
directional communication channel between one or
many publishers and an arbitrary number of subscribers.
Meanwhile, ROS service can implement the request–
response paradigm with communication between clients
and a single server. All theses messages to be exchanged
can be standard ROS-defined or user-defined.

In this framework, information includes two kinds: the
sensor information and the geometry information. For
sensor information, currently we have:

/motion_states as geometry_msgs/Pose
/joint_states as sensor_msgs/JointState

All geometry information in ROS is managed by tf
transformation library, including every robot parts,
markers (marker array), sensors and hands.

Model management
The motion planning framework called MoveIt [17]
is used in our work to replace previous robot_descrip-
tion stack. With MoveIt Setup Assistant, we can build
the configuration files for any given robot only if we
have their 3D models files and physical parameters. In
our case, we integrated one type of industrial robot, the

Fig. 5  Space registration. The coordinate systems in motion sensing-
based manipulating operation

Fig. 6  Sensor data filtering. Palm position in z direction location plot-
ted for a certain time when holding hand in one fixed pose where
the black line is the raw sensor data and red line is the sensor data
after filtering

Page 6 of 10Deng et al. Robot. Biomim. (2016) 3:23

Staubli TX90, with MoveIt. Meanwhile, for better kin-
ematics performance, we use a Kinematics/IKFast [18]
to automatically build kinematics plugin. Therefore, the
model management will consist of two packages, the
moveit_robot_config and kinematics_plugins.

Manipulation control
To drive robot with motion sensing commands, the
manipulation control module servers as an operator:
pulling the published motion commanders and sending
request to physical robot controller through a set of ROS
actions and services.

When developing this module, we take advantage of the
robot control architecture, called move_group in MoveIt.

As shown in Fig. 9, move_group will look for configura-
tion files in ROS param server to generate full robot model
management, and communicate with the physical robot
controller to get current state information (positions of the
joints, etc.) and to send next state goals. For motion sensing
operation, this control interface talks with physical robot
controller using the FollowJointTrajectoryAction interface.
Currently, in our framework, we implement MoveGroupAc-
tion, Pick and Place action client with roscpp through the
following developed API for motion sensing control:

bool motion_setPose(geometry_msgs::Pose pose);
geometry_msgs::Pose info_getPose();
std::vector 〈double〉 info_get_joints();

Fig. 7  Motion sensing command delay. Display the raw palm position with ball marker and simulate the corresponding arm action

Fig. 8  Nodes and topics in motion sensing layer. The sequencer subscribes raw sensor data published by sensor driver, then performs data process-
ing and publishes captured motion states

Page 7 of 10Deng et al. Robot. Biomim. (2016) 3:23

Visualization
The ROS visualizer provides a tool for robotic manipu-
lating scene and information display. Additionally, with
Gazebo simulator [19], we can simulate robot in a real
physical world with realistic sensor feedback and physi-
cally plausible interactions between objects. Part of these
functions has been established in our previous work [20].
For friendly use, the ROS node /dashboard_gui provides
a simple dashboard-style dashboard user interface for
operation and settings.

Therefore, our manipulation control module has real-
ized the processes from subscribing position goals from
/motion_command_publisher, planning and generating
executable trajectory, and finally publishing the path to
the hardware interface.

General hardware interface
The hardware interface layer is acting as translator
between target hardware controller and ROS foundation.
This layer is a combination of very low level communica-
tion protocols and software interfaces, enabling applica-
tions to access and operate physical robot.

In general, almost all modern industrial robot plat-
forms provides interfaces for users to communicate with
controllers that is the reason why ROS industrial was
developed. Currently, industrial manipulators, like ABB,
Kuka, Adept, Fanuc, Motoman, Staubli and Universal
Robots, are supported by ROS-Industrial packages, and
this length of list is still increasing with more developer
creating standard interfaces to stimulate “hardware-
agnostic” software development for new manipulators.
In our research, we found that once a robot controller
could provide access to position control (get and set posi-
tions of the joints or end effector), a hardware interface
to operate this manipulator would be developed.

And in our study, we defined a standardized interface
template with general service. And the standardized ROS
service is defined in Table 2.

In practice, supporting communication protocols is
relayed to the operation system running in physical robot
controller. Generally, Ethernet and CAN bus are widely
used. The hardware interface binds ROS and physical
robot controller together. Trajectories from manipulator
control module are streamed to the controller through
the supported communication protocol. After that, con-
troller buffers these points and interpolates between
them to drive motors of the robot to the desired pose.
And here we give the API template for general hardware
interface development:

bool GetRobots(std::vector 〈int〉 robots);
bool Login(const std::string url, const std::string user-
Name, const std::string password);
bool GetRobotJoints(std::vector 〈double〉 joints);
bool GetRobotCartesianPosition(std::vector 〈double〉
position);
bool SetJoints(const std::vector 〈double〉 joints);
bool MoveL(std::vector 〈double〉 pos);
bool MoveJ(std::vector 〈double〉 pos);

The implementation of these classes is architecture
dependent. In our framework, this layer is packaged and
installed as robot drivers, which can be easily updated
over the air using the built-in rosinstall mechanism, when
adopting new manipulators.

After obtaining the connections between ROS
and the targeted robot controller, we can build two
nodes: motion_controller_server and motion_control-
ler_client with defined messages types to establish the

Fig. 9  Manipulation control architecture. High-level architecture for
the robot manipulation provided by MoveIt

Table 2  Standardized ROS service for general hardware
interface development

motion_commander/commander.srv

uint8 command_index

std_msgs/Header header

float32[] position

float32[] orientation

float32[] joints

– – –

uint8 result

std_msgs/Header header

float32[] position

float32[] orientation

float32[] joints

Page 8 of 10Deng et al. Robot. Biomim. (2016) 3:23

request–response paradigm for motion commands
publishing.

Implementation and experiments
Experiment configuration
To preliminarily validate the framework, we conduct
motion sensing manipulating experiments both in
simulation and on physical robot. The motion sensing
input devices are Kinect Xbox 360 and Leap Motion
with SDK v2. The targeted robot is the 6 axis Staubli
TX90 with the SOAP communication protocol sup-
ported. We can easily generate the staubli_moveit_con-
fig and staubli_tx90_ikfast packages. After that, we
modify the launch files and start to check the scene in
Rviz.

Experiment result and analysis
The result of the motion sensing-based robot manipula-
tion experiment in simulation is shown in Fig. 10. Both
Kinect and Leap Motion are tested under the same
environment.

And a very simple pick and place manipulation experi-
ment was also conducted on the physical robot with
Kinect, as setup in Fig. 11. We can easily teach the robot
where the picking pose and placing pose are by the hand
gestures captured from Kinect. The proposed framework
will transform and command the robotic arm to desired
positions. And Fig. 12 gives the snapshots of robot
manipulation from initial pose to picking pose and the
final placing pose.

The results have shown that the proposed framework
is feasible for robotic manipulation with motion sensing
control.

Conclusion
This paper proposed a motion sensing-based robotic
manipulation framework. The framework contains an
integrated motion sensing devices driver for gesture
commands recognition, a ROS-based framework core
to map motion sensing intents to robot operation com-
mands, and a general robot hardware interface for com-
patibility with varies robot manipulators. The validation
in simulation and physical robot have shown that the
proposed framework is feasible for robotic manipulation
with motion sensing control. And hardware driver repos-
itory can be found here: https://github.com/pinkedge/
ROS-I_hardware_drivers.git.

Discussion and future work
The main contributions of our research are: (1) design-
ing a modular motion sensing framework, which can
bind brands of input devices and manipulators together,
(2) proposing to use the ROS built-in rosinstall mecha-
nism to update hardware interfaces over the air for gen-
eral hardware compatibility. However, there are still some
issues and improvements to be addressed in our future
work: first, dynamic response and accuracy improve-
ment. The performance variations between different
motion sensors made it difficult for our algorithm to
evaluate and take an unified control; second, smart and
robust trajectory replication. In teach-pendant operation
pattern, the system is a typical human-in-the-loop. With
DTW spacing registration method, the requirement for
precise trajectory imitation was not so high. Thus, our
future works are: (1) quantitative analysis of dynamic

Fig. 10  Motion sensing robotic manipulating using the proposed
framework. With Microsoft Kinect (left) and with Leap Motion (right)

Fig. 11  Motion sensing robotic manipulating on the physical robot
with Kinect in which the robotic arm is moving from initial place to
the first picking pose as the hand commands

https://github.com/pinkedge/ROS-I%5fhardware%5fdrivers.git
https://github.com/pinkedge/ROS-I%5fhardware%5fdrivers.git

Page 9 of 10Deng et al. Robot. Biomim. (2016) 3:23

behaviors and accuracy, (2) trajectory replication per-
formance improvement, (3) application of dual-arm
manipulation.

Authors’ contributions
ZX and HD designed the framework, HD developed the framework and
algorithms, HD and SW developed the hardware system and conducted the
experiments, ZX, YG, JX and PF analyzed and evaluated the results. HD and ZX
wrote the manuscript. All authors read and approved the final manuscript.

Author details
1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sci-
ences, Shenzhen, China. 2 Laboratory of Human‑Machine Intelligence‑Synergy
Systems, Chinese Academy of Sciences, Shenzhen, China.

Acknowledgements
This work was supported by National Science Foundation of China (51305436,
61403368), Guangdong Natural Science Foundation for Distinguished Young
Scholars (2015A030306020), Major Project of Guangdong Province Sci-
ence and Technology Department (2014B090919002), Shenzhen High-level
Oversea Talent Program (KQJSCX20160301144248) and Fundamental Research
Program of Shenzhen (JCYJ20140901003939038, JCYJ20140417113430639).

Competing interests
The authors declare that they have no competing interests.

Received: 24 July 2016 Accepted: 29 November 2016

References
	1.	 Kemp CC, Edsinger A, Torres-Jara E. Challenges for robot manipulation in

human environments. IEEE Robot Autom Mag. 2007;14(1):20.
	2.	 Edsinger A, Kemp CC. Manipulation in human environments. In: 2006 6th

IEEE-RAS international conference on humanoid robots. IEEE; 2006.
p. 102–9.

	3.	 Sian N, Sakaguchi T, Yokoi K, Kawai Y, Maruyama K. Operating humanoid
robots in human environments. In: Proceedings of the robotics, science
and systems workshop on manipulation for human environments, Phila-
delphia, Pennsylvania. 2006.

	4.	 Low K-H. Industrial robotics: programming, simulation and applications.
Augsburg: Robert Mayer-Scholz; 2007.

	5.	 Official RobotWorks Homepage. http://www.bluetechnik.com/robot-
works.html.

	6.	 Todd RH, Allen DK, Alting L. Manufacturing processes reference guide.
Norwalk, CT: Industrial Press Inc.; 1994.

	7.	 Kinect for Windows. https://www.microsoft.com/en-us/
kinectforwindows/.

	8.	 Leap Motion. https://www.leapmotion.com/.
	9.	 Ou K-L, Tarng W, Yao Y-C, Chen G-D. The influence of a motion-sensing

and game-based mobile learning system on learning achievement
and learning retention. In: 2011 11th IEEE international conference on
advanced learning technologies (ICALT). IEEE; 2011. p. 511–5.

	10.	 Lu T, Ko C, Lin C, Lin Y. Applying motion sensing technology to interact
with 3d virtual characters. In: Defense science research conference and
expo (DSR). IEEE; 2011. p. 1–4.

	11.	 Chang C-w, He C-j. A kinect-based gesture command control method
for human action imitations of humanoid robots. In: 2014 international
conference on fuzzy theory and its applications (iFUZZY2014). IEEE; 2014,
p. 208–11.

Fig. 12  Snapshots of motion sensing robotic manipulating, moves from initial place to the first picking pose, picks the object and places at the
desire position

http://www.bluetechnik.com/robotworks.html
http://www.bluetechnik.com/robotworks.html
https://www.microsoft.com/en-us/kinectforwindows/
https://www.microsoft.com/en-us/kinectforwindows/
https://www.leapmotion.com/

Page 10 of 10Deng et al. Robot. Biomim. (2016) 3:23

	12.	 El-laithy RA, Huang J, Yeh M. Study on the use of microsoft kinect for
robotics applications. In: 2012 IEEE/ION position location and navigation
symposium (PLANS). IEEE; 2012. p. 1280–8.

	13.	 ROS: Robotic Operation System. http://www.ros.org.
	14.	 MIT Kinect Demos. http://wiki.ros.org/mit-ros-pkg/KinectDemos.
	15.	 Leap Motion SDK. http://wiki.ros.org/leapmotion.
	16.	 Senin P. Dynamic time warping algorithm review. Information and Com-

puter Science Department, University of Hawaii at Manoa Honolulu, USA;
2008, p. 1–23.

	17.	 MoveIt! http://moveit.ros.org/.
	18.	 Kinematics/IKFast-MoveIt. http://moveit.ros.org/wiki/Kinematics/IKFast.
	19.	 Gazebo. http://www.gazebosim.org/.
	20.	 Qian W, Xia Z, Xiong J, Gan Y, Guo Y, Weng S, Deng H, Hu Y, Zhang J.

Manipulation task simulation using ros and gazebo. In: 2014 IEEE inter-
national conference on robotics and biomimetics (ROBIO). IEEE; 2014, p.
2594–98.

http://www.ros.org
http://wiki.ros.org/mit-ros-pkg/KinectDemos
http://wiki.ros.org/leapmotion
http://moveit.ros.org/
http://moveit.ros.org/wiki/Kinematics/IKFast
http://www.gazebosim.org/

	A motion sensing-based framework for robotic manipulation
	Abstract
	Background
	Framework architecture design
	Motion sensing commands
	3D tracking of hand articulations
	Motion sensor data processing
	Motion sensing commands publish

	Framework core
	Information management
	Model management
	Manipulation control
	Visualization

	General hardware interface
	Implementation and experiments
	Experiment configuration
	Experiment result and analysis

	Conclusion
	Discussion and future work
	Authors’ contributions
	References

