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Abstract 

To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. 
This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. 
Motion sensing technology, which enables human–machine interaction in a novel and natural interface using ges-
tures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipula-
tion. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes 
gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a 
general hardware interface layer was also developed in the framework. Simulation and physical experiments have 
been conducted for preliminary validation. The results have shown that the proposed framework is an effective 
approach for general robotic manipulation with motion sensing control.
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Background
Robots have found an increasingly wide utilization in all 
fields, and they move objects with blurring speed, repeat 
performances with unerring precision and manipulate 
tasks with high dexterity. Robots have long been imaged 
as mechanical workers, cooperating with or even replac-
ing people [1]. Yet the situation is, to data, robots have 
been very successful at manipulation in controlled envi-
ronments such as in a factory or laboratory. When out-
side of the controlled environments, they normally 
perform tasks when operating with human [2]. Although 
the latest robotic researches would handle the situations 
with a sophisticated sensing and intelligent system [3], 
most robots are still under a typical “teach-pendant oper-
ating” pattern to get knowledge about current environ-
ment configurations.

Typical teach-pendant is a handheld control unit 
equipped with buttons or joysticks to manually send 
the robot to desired positions, a screen to display 
robot states, and a large red emergency stop button. In 

teach-pendant process, operators need to stand in certain 
nearby area, hold the control unit and move robot manu-
ally; meanwhile, special focus should be paid on to avoid 
collision and identify the arrival at targeted position, as 
shown in Fig. 1a. The whole procedures require operators 
with high technical skills training, and high hand–eye 
coordination; otherwise, it would be so extremely easy to 
lead serious collision damage to operators or equipments. 
Differing from the active teach-pendant operation mode, 
“lead-by-the-nose” is a passive technique, in which, con-
troller will de-energize the robot joints and allow users to 
drag and move the robot by hand to any desired positions 
or even record paths [4], as shown in Fig. 1b.

However, both techniques mentioned above are hard-
ware dependent and controller specific, which definitely 
increase learning and training costs when adapting to 
new types of robotic system. In final analysis, all these 
issues come down to a matter of lacking user-friendly but 
general human–machine interaction interface. Recent 
researches have shown that the motion sensing tech-
nology enables human–machine interaction in a novel 
and natural interface using gestures or spoken com-
mands. And latest revolutionary motion sensing devices, 
like Kinect [7] and Leap Motion [8], are boosting wider 
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applications of motion sensing technology from gaming 
to robotics [9, 10].

Some approaches have put forward that the motion 
sensing data can control the action of a robot, where 
robot will initiate human movements, or learn actions 
from human [11], and this motion sensing is usually at 
the crossroad between gesture recognition and skeleton 
tracking. In practice, sometimes, we only interested in 
the pose of hand, which can be used to directly drive the 
end effector of a robot, or in some other cases, we may 
also need to command robot in a jointed mode which 
requires joint angles date captured from skeleton track-
ing. In previous studies, numbers of works have been 
proposed on use of motion sensing input devices for 
robotic applications [12].

However, most of them were focusing on specific cases, 
which usually integrated a certain type of sensors, Kinect, 
Leap Motion, or et al., for a targeted robot system config-
uration. And there is no systemic solutions published for 
general motion sensing-based robotic manipulation. So 

our objects in this research are: (1) providing a modular 
and easy plugin-and-play framework to connect between 
any available motion sensing input devices and robotic 
systems. (2) Simplifying the hardware integration by pro-
posing a driver update pattern.

The rest of this paper is organized as follows. “Frame-
work architecture design” section describes the architec-
ture design of our proposed framework. “Motion sensing 
commands” section shows how to create the motion 
sensing commands for robotic manipulation. “Frame-
work core” section depicts the control core for robotic 
manipulation. “General hardware interface” section 
depicts realization of hardware interface for hardware 
abstraction. “Implementation and experiments” section 
demonstrates implementation and experiments of the 
proposed framework. “Conclusion” section summarizes 
our study. And “Discussion and future work” section 
starts discussions about this research and works out the 
future work.

Framework architecture design
For motion sensing manipulation, the proposed frame-
work should be the characteristic of: (1) skeleton tracking 
or gesture capture, especially the poses and joint angles 
in the chosen sensing area. (2) Mapping from human 
movements to robot actions. (3) Compatibility with 
varied hardware, including motion sensing devices and 
robots.

To meet these requirements, our design philosophy of the 
framework is to develop as distributed and modular as pos-
sible, so that it could be hardware independent and easily 
configured. The foundation of our framework is laid on the 
powerful robot operation system (ROS) [13], which adds 
value to the development of robotics projects and applica-
tions with open-sourced packages, libraries and tools.

Therefore, the framework is designed in a three-layer 
structure, which comprises the motion sensing layer, 
ROS foundation and hardware interface layer, as given 
in Fig.  2. This three-layer structured framework is tar-
geted to provide an effective approach for general robotic 
manipulation.

The first motion sensing (MS) layer provides drivers 
for sensors and manages the raw commands captured 
from skeleton tracking and gestures. Note that the devel-
opment of this layer is based on ROS communities and 
official SDK, while our main contribution is to design the 
integration of drivers and the distributed and modular 
designed motion sensing service and sequencer, which 
allows users to request poses or joint angles data from 
motion sensing input devices more friendly. Existing ser-
vices can be modified, or new services can be added very 
easily in ROS layer to adapt for the requirement of cus-
tomized manipulation task.

Fig. 1  Typical operation patterns. a Teach-pendant operation with 
hand–eye coordination and fully focus [5] and b “lead-by-the-nose” 
operation for paint spraying [6]



Page 3 of 10Deng et al. Robot. Biomim.  (2016) 3:23 

The ROS foundation layer is at the heart of the pro-
posed framework, which can be called the framework 
core. Functionally, this layer can be divided into four 
modules, which are the information management mod-
ule, model management module, manipulation control 
module and visualization module. Developed on ROS 
platform, this layer creates the middleware between 
motion sensing devices and the real robots.

The hardware interface (HW) layer is a hardware com-
munication interface that talks and listens to the control-
ler of physical robots. With communication protocols, it 
can build a service-request mode between the framework 
and the actual robots. The main advantage of this layer 
is, based on ROS industrial, the integration can be estab-
lished on any hardware with communication protocol 
supported.

Motion sensing commands
In this section, we will focus on how to understand the 
intent of the operator and create motion sensing com-
mands for robotic manipulating. Even though robots can 
be operated in end effector mode and joint mode, for 
motion sensing commanding, end effector mode will be 
more compatible regardless of different DOFs configura-
tion. In our current study, we only focus on tracking of 
hand articulations.

3D tracking of hand articulations
Tracking articulated objects is an interesting and hot 
research problem, and latest revolutionary motion 
sensing devices are boosting wider applications of this 
technology from gaming to robotics. Among them, 
3D tracking of human hands is the most efficient and 
straightforward. We can acquire the 3D position, orienta-
tion and full articulation of a human hand. And in ROS 
communities, MIT Kinect demos [14] provided purely 
hand and finger detection, and Leap Motion SDK [15] 
also supported for hands skeleton tracking, as shown in 
Fig. 3.

Here we defined a universal hand model for tracking as 
given in Fig. 4. All motion sensing devices will be capa-
ble of tracking the hand palm and provide the follow-
ing information: hands numbers, hand types, position 
of each hand palm, and direction of each hand palm. All 
the information is standardized in a ROS message type 
motion_sensor/hand.msg as defined in Table 1 and can be 
published from motion sensing service in a given topic /
motion_sensor/hand.

Based on the device drivers from ROS communities, 
we modified the original interfaces and remapped the 
data pipelines into the defined message type. Note that in 
our framework not all official functions of the devices are 
supported, but it is enough for motion sensing robotic 

Fig. 2  Framework architecture designed. Three main functional layers, the MS-motion sensing layer, ROS layer and the HW-hardware layer



Page 4 of 10Deng et al. Robot. Biomim.  (2016) 3:23 

manipulating, and also this capability can be easily 
extended. In this layer, a motion sensing and sequencer 
module was developed, which will bind multiple motion 
sensor input, standardize and integrate with ROS layer. 
As whole framework is designed modularly, when 
adopted new sensors, this layer can be packaged and 
installed as driver and later easily updated for new fea-
tures over the air using the built-in rosinstall mechanism.

Motion sensor data processing
Even though numerous palm pose can be captured and 
acquired from motion sensing devices, there are still 
some theoretically interesting problems, space registra-
tion, sensor data filtering, and dynamic response.

To satisfy quick trajectory tracking, the hand space 
{G}, motion sensing device space {O} and the robot 
space {R} need to be mapped to realize registration. 
Since we have no additional optical measuring device 
to build this transformation relationship during opera-
tion, we make full use of dynamic time warping (DTW) 
to calculate every pose distance between two hand ges-
tures to measure the minimal motion similarity [16] 
between end effector of the robot and the hand. Thus, 
we avoid building the transformation relationship 
between coordinate system, but try to map the dynamic 
distance matrix of hand palm in motion sensing device 
space {O} to distance matrix of end effector in world 
space {W}, as shown in Fig. 5. Source motion created by 
hands will be speed-reduced in a given ratio and imi-
tated by the robot.

Motion sensing devices are so acute that manipulation 
operation may easily fail due to sensor noise or natural 
hand shaking. In Fig.  6, the plotted hand palm position 
in z direction from raw data shows a slight fluctuation, 
which will definitely lead robot to tremble in the cor-
responding axial direction. Additionally, uncontrolled 
hand movement, especially when hand moves into and 
departs from the sensing area, may also cause abnormal 
action of the robot. When choosing the filter, we value its 
response performance. So the simplest way we used is a 
mean filtering. The red line in Fig. 6 is the result of sensor 
data after filtering, in which the queue size is set as 10. 

Fig. 3  3D tracking of hands with position, orientation and full articulation. a Two hands tracking from Kinect, displayed in Rviz and b hand skeleton 
tracking from Leap Motion, displayed in LeapCommandCenter

Fig. 4  Tracking model definition. Hand palm tracking in our current 
motion sensing framework

Table 1  Standardized message definite for  hand informa-
tion

motion_sensor/hand.msg

std_msgs/Header header

uint32 hands_num

string[] hand_typer

geometry_msgs/Point position

geometry_msgs/Quaternion orientation
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And for uncontrolled hand movement, we set an optimal 
threshold to ignore huge pose changes in a short time.

However, in preliminary experiments, we found out 
that robot action would wait for a noticeable delay when 
the sensor is triggered, as shown in Fig. 7. Theoretically, 
this delay mainly comes from the sensor SDK algorithm, 
data filtering and mapping from gestures to robot com-
mands. For Kinect, the algorithm delay is recorded and 
estimated to be five frames, and also the first and last 10 
frames of the raw data were ignored by setting the opti-
mal threshold for huge pose changes in a short time. For 
data filtering delay, it is difficult to strike the right balance 
between the stability and dynamic response.

In our framework, max rate of raw sensor data acqui-
sition is in 30  frames/s. The real-time computation of 
data filtering and coordinate mapping is costly. Motion 
sensors will never be real-time responsive, and it is very 

important that the code is running the data read from 
the sensor and the position command asynchronously. In 
our study, we took stamp.nsecs in the published sensor 
message to compare with robot states and drop outdated 
frames until the action is done.

Motion sensing commands publish
After getting intents of operator, the layer need tell the 
information to robot controller. Since motion sensing 
commands are specifically 6D-pose of the hand palm, the 
information is managed in geometry_msgs/Pose message 
type and published to global /tf.

The relationship of nodes and topics in MS layer can be 
created using rqt_graph tool as shown in Fig. 8.

Framework core
As the framework core, ROS foundation layer consists 
of four modules and plays as the middleware combining 
all software and hardware together. On functional level, 
those modules are responsible for information manage-
ment, model management, manipulating control and 
visualization.

Information management
In a typical ROS system, the roscore process acts as the 
central manager of all nodes and establishes point-to-
point communication between nodes in  topics or ser-
vices paradigms. A ROS topic can publish and subscribe 
messages to certain  topics, resulting in building a uni-
directional communication channel between one or 
many publishers and an arbitrary number of subscribers. 
Meanwhile, ROS service can implement the request–
response paradigm with communication between clients 
and a single server. All theses messages to be exchanged 
can be standard ROS-defined or user-defined.

In this framework, information includes two kinds: the 
sensor information and the geometry information. For 
sensor information, currently we have:

/motion_states as geometry_msgs/Pose
/joint_states as sensor_msgs/JointState

All geometry information in ROS is managed by tf 
transformation library, including every robot parts, 
markers (marker array), sensors and hands.

Model management
The motion planning framework called MoveIt [17] 
is used in our work to replace previous robot_descrip-
tion stack. With MoveIt Setup Assistant, we can build 
the configuration files for any given robot only if we 
have their 3D models files and physical parameters. In 
our case, we integrated one type of industrial robot, the 

Fig. 5  Space registration. The coordinate systems in motion sensing-
based manipulating operation

Fig. 6  Sensor data filtering. Palm position in z direction location plot-
ted for a certain time when holding hand in one fixed pose where 
the black line is the raw sensor data and red line is the sensor data 
after filtering
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Staubli TX90, with MoveIt. Meanwhile, for better kin-
ematics performance, we use a Kinematics/IKFast [18] 
to automatically build kinematics plugin. Therefore, the 
model management will consist of two packages, the 
moveit_robot_config and kinematics_plugins.

Manipulation control
To drive robot with motion sensing commands, the 
manipulation control module servers as an operator: 
pulling the published motion commanders and sending 
request to physical robot controller through a set of ROS 
actions and services.

When developing this module, we take advantage of the 
robot control architecture, called move_group in MoveIt. 

As shown in Fig.  9, move_group will look for configura-
tion files in ROS param server to generate full robot model 
management, and communicate with the physical robot 
controller to get current state information (positions of the 
joints, etc.) and to send next state goals. For motion sensing 
operation, this control interface talks with physical robot 
controller using the FollowJointTrajectoryAction interface. 
Currently, in our framework, we implement MoveGroupAc-
tion, Pick and Place action client with roscpp through the 
following developed API for motion sensing control:

bool motion_setPose(geometry_msgs::Pose pose);
geometry_msgs::Pose info_getPose();
std::vector 〈double〉 info_get_joints();

Fig. 7  Motion sensing command delay. Display the raw palm position with ball marker and simulate the corresponding arm action

Fig. 8  Nodes and topics in motion sensing layer. The sequencer subscribes raw sensor data published by sensor driver, then performs data process-
ing and publishes captured motion states
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Visualization
The ROS visualizer provides a tool for robotic manipu-
lating scene and information display. Additionally, with 
Gazebo simulator [19], we can simulate robot in a real 
physical world with realistic sensor feedback and physi-
cally plausible interactions between objects. Part of these 
functions has been established in our previous work [20]. 
For friendly use, the ROS node /dashboard_gui provides 
a simple dashboard-style dashboard user interface for 
operation and settings.

Therefore, our manipulation control module has real-
ized the processes from subscribing position goals from 
/motion_command_publisher, planning and generating 
executable trajectory, and finally publishing the path to 
the hardware interface.

General hardware interface
The hardware interface layer is acting as translator 
between target hardware controller and ROS foundation. 
This layer is a combination of very low level communica-
tion protocols and software interfaces, enabling applica-
tions to access and operate physical robot.

In general, almost all modern industrial robot plat-
forms provides interfaces for users to communicate with 
controllers that is the reason why ROS industrial was 
developed. Currently, industrial manipulators, like ABB, 
Kuka, Adept, Fanuc, Motoman, Staubli and Universal 
Robots, are supported by ROS-Industrial packages, and 
this length of list is still increasing with more developer 
creating standard interfaces to stimulate “hardware-
agnostic” software development for new manipulators. 
In our research, we found that once a robot controller 
could provide access to position control (get and set posi-
tions of the joints or end effector), a hardware interface 
to operate this manipulator would be developed.

And in our study, we defined a standardized interface 
template with general service. And the standardized ROS 
service is defined in Table 2.

In practice, supporting communication protocols is 
relayed to the operation system running in physical robot 
controller. Generally, Ethernet and CAN bus are widely 
used. The hardware interface binds ROS and physical 
robot controller together. Trajectories from manipulator 
control module are streamed to the controller through 
the supported communication protocol. After that, con-
troller buffers these points and interpolates between 
them to drive motors of the robot to the desired pose. 
And here we give the API template for general hardware 
interface development:

bool GetRobots(std::vector 〈int〉 robots);
bool Login(const std::string url, const std::string user-
Name, const std::string password);
bool GetRobotJoints(std::vector 〈double〉 joints);
bool GetRobotCartesianPosition(std::vector 〈double〉 
position);
bool SetJoints(const std::vector 〈double〉 joints);
bool MoveL(std::vector 〈double〉 pos);
bool MoveJ(std::vector 〈double〉 pos);

The implementation of these classes is architecture 
dependent. In our framework, this layer is packaged and 
installed as robot drivers, which can be easily updated 
over the air using the built-in rosinstall mechanism, when 
adopting new manipulators.

After obtaining the connections between ROS 
and the targeted robot controller, we can build two 
nodes: motion_controller_server and motion_control-
ler_client with defined messages types to establish the 

Fig. 9  Manipulation control architecture. High-level architecture for 
the robot manipulation provided by MoveIt

Table 2  Standardized ROS service for  general hardware 
interface development

motion_commander/commander.srv

uint8 command_index

std_msgs/Header header

float32[] position

float32[] orientation

float32[] joints

– – –

uint8 result

std_msgs/Header header

float32[] position

float32[] orientation

float32[] joints
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request–response paradigm for motion commands 
publishing.

Implementation and experiments
Experiment configuration
To preliminarily validate the framework, we conduct 
motion sensing manipulating experiments both in 
simulation and on physical robot. The motion sensing 
input devices are Kinect Xbox  360 and Leap Motion 
with SDK v2. The targeted robot is the 6 axis Staubli 
TX90 with the SOAP communication protocol sup-
ported. We can easily generate the staubli_moveit_con-
fig and staubli_tx90_ikfast packages. After that, we 
modify the launch files and start to check the scene in 
Rviz.

Experiment result and analysis
The result of the motion sensing-based robot manipula-
tion experiment in simulation is shown in Fig.  10. Both 
Kinect and Leap Motion are tested under the same 
environment.

And a very simple pick and place manipulation experi-
ment was also conducted on the physical robot with 
Kinect, as setup in Fig. 11. We can easily teach the robot 
where the picking pose and placing pose are by the hand 
gestures captured from Kinect. The proposed framework 
will transform and command the robotic arm to desired 
positions. And Fig.  12 gives the snapshots of robot 
manipulation from initial pose to picking pose and the 
final placing pose.

The results have shown that the proposed framework 
is feasible for robotic manipulation with motion sensing 
control.

Conclusion
This paper proposed a motion sensing-based robotic 
manipulation framework. The framework contains an 
integrated motion sensing devices driver for gesture 
commands recognition, a ROS-based framework core 
to map motion sensing intents to robot operation com-
mands, and a general robot hardware interface for com-
patibility with varies robot manipulators. The validation 
in simulation and physical robot have shown that the 
proposed framework is feasible for robotic manipulation 
with motion sensing control. And hardware driver repos-
itory can be found here: https://github.com/pinkedge/
ROS-I_hardware_drivers.git.

Discussion and future work
The main contributions of our research are: (1) design-
ing a modular motion sensing framework, which can 
bind brands of input devices and manipulators together, 
(2) proposing to use the ROS built-in rosinstall mecha-
nism to update hardware interfaces over the air for gen-
eral hardware compatibility. However, there are still some 
issues and improvements to be addressed in our future 
work: first, dynamic response and accuracy improve-
ment. The performance variations between different 
motion sensors made it difficult for our algorithm to 
evaluate and take an unified control; second, smart and 
robust trajectory replication. In teach-pendant operation 
pattern, the system is a typical human-in-the-loop. With 
DTW spacing registration method, the requirement for 
precise trajectory imitation was not so high. Thus, our 
future works are: (1) quantitative analysis of dynamic 

Fig. 10  Motion sensing robotic manipulating using the proposed 
framework. With Microsoft Kinect (left) and with Leap Motion (right)

Fig. 11  Motion sensing robotic manipulating on the physical robot 
with Kinect in which the robotic arm is moving from initial place to 
the first picking pose as the hand commands

https://github.com/pinkedge/ROS-I%5fhardware%5fdrivers.git
https://github.com/pinkedge/ROS-I%5fhardware%5fdrivers.git
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behaviors and accuracy, (2) trajectory replication per-
formance improvement, (3) application of dual-arm 
manipulation.
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