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Integrated assembly and motion 
planning using regrasp graphs
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Abstract 

This paper presents an integrated assembly and motion planning system to recursively find the assembly sequence 
and motions to assemble two objects with the help of a horizontal surface as the supporting fixture. The system is 
implemented in both assembly level and motion level. In the assembly level, the system checks all combinations of 
the assembly sequences and gets a set of candidates. Then, for each candidate assembly sequence, the system incre-
mentally builds regrasp graphs and performs recursive search to find a pick-and-place motion in the motion level to 
manipulate the base object as well as to assemble the other object to the base. The system integrates the candidate 
assembly sequences computed in the assembly level incrementally and recursively with graph searching and motion 
planning in the motion level and plans the assembly sequences and motions integratedly for assembly tasks. Both 
simulation and real-world experiments are performed to demonstrate the efficacy of the integrated planning system.
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Background
Introduction
This paper studies the integrated assembly and manipula-
tion planning using regrasp graphs [1] and a horizontal 
surface [2]. Given two parts and their relative positions in 
an assembled structure, our integrated planning system 
decides (1) which object is used as the base, (2) how to 
place the base, and (3) how to assemble the second part 
to the base. The results are the integration of assembly 
sequences and robot motions.

In state-of-the-art robotic assembly systems, the 
assembly sequences and robot motions are pre-defined 
manually, which significantly impairs the automation of 
next-generation manufacturing. Take Fig. 1a for example. 
To use robots to assemble two objects, the traditional way 
is that technicians figure out the assembly plan and pro-
gram the robots using teach pads: They make the robot to 
pick up an object as the base, place it down on a fixture 
using some pre-defined position and orientation, pick up 
the second object, and assemble the second object to the 

base following some given geometric relationship. The 
assembly sequence is decided by the intelligence of the 
technicians: There are several possible solutions shown in 
Fig. 1b, but the technicians manually select one of them 
for the robot using their experience.

In this paper, we automate the manual process per-
formed by the technicians. We propose an integrated 
assembly and motion planning system which is done in 
both assembly level and motion level. In the assembly 
level, the system checks all combinations of the assem-
bly sequences and gets a set of candidates. In the motion 
level, the system performs motion planning recur-
sively for each candidate assembly sequence and finds 
the motions to manipulate the base object as well as to 
assemble the other object to the base.

Lots of studies have been devoted to individual prob-
lems like assembly planning [3], picking-up and placing-
down objects [4, 5], regrasping [6–8], as well as motion 
planning [9]. But to our best knowledge, few studied 
the integration, which requires considering not only the 
assembly orders and assembly directions, but also the 
accessible grasps of each objects and the goal pose of the 
assembled structure. The later part is an important prob-
lem which was never discussed by the assembly plan-
ning, grasp planning, and motion planning literature. To 
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this extent, our paper is the initial work that does inte-
grated assembly and motion planning. Specifically, we 
develop an integrated planning system which consid-
ers: (1) Which object should be treated as the base and 
be manipulated first, (2) which position and orientation 
should the base be, and (3) how to assemble the second 
object to the base. Our system plans assembly sequences 
and motions automatically and can be used to replace 
some manual work of system integrators. The efficacy of 
our system is demonstrated using both simulations and 
real-world executions in the experimental section. The 
work is expected to be a precedent planner for object 
assembly using force sensors [10, 11].

Related work
In respective fields, assembly planning and motion plan-
ning are well studied. In assembly planning, early work 
like [12] and [3] were devoted to symbolic planning. Mello 
[12] presented the AND/OR graph approach to analyze 
assembly structures. Wilson and Latombe [3] presented 
the seminal work that uses non-directional blocking 
graph (NDBG) to generate assembly sequences. Bozma 
and Koditschek [13] presented a sphere assembly method 
which is essentially a path planning problem. More recent 
work like [14] and [15] concentrate on searching the fea-
sible grasp and manipulation motions with respect to a 
pre-defined geometric relationships. In particular, [15] 
does assembly planning from the view point of multiple 
robot cooperation. Instead of assembly sequences of the 
objects, [15] plans the assembly sequences of multiple 
robots. The poses and sequences of objects in the work 
are pre-defined. Other work like [16] converts assem-
bly planning to a semi-automatic process and learns the 
assembly sequence from human beings. The adopted 
method avoids the constraints from the robot bodies 
and the other parts of the assembled structure, instead of 
using them. Comparing with our work, it did not integrate 

the assembly and motion. In motion planning, [17, 18] are 
the leading study that compared the workspace and joint 
space approaches. Kavraki et  al. [19], Simeon et  al. [20] 
and Lavalle and Kuffner [9] presented the probabilistic 
approaches to find collision-free motion in the joint space. 
Vahrenkamp et al. [21], Berenson et al. [22], Phillips and 
Likhachev [23] represent the more recent studies that use 
historic data to improve system performance.

For the integration, although there are few studies 
about integrated assembly and motion planning, there 
are lots of contemporary research focused on integrated 
task and motion planning. [24–31] are examples where 
the planning is done in both task level and motion level. 
In the task level, these planners employ meta-primitives 
to divide and conquer tasks. In the motion level, these 
planners plan motions to implement the primitives gen-
erated in the task level. The task-level planning is usu-
ally done incrementally and recursively along with the 
motion-level planning. For example, [28] uses geomet-
ric backtracking in task level to decompose and plan the 
motion in the motion level. Krontiris and Bekris [30] use 
randomly sampled subgoals as a guide to help motion 
planners to perform cylinder rearrangements. Dantam 
et  al. [31] present an incremental solution for stacking 
and rearranging tasks which are effective to exploded 
combinatorics. The incremental subtasks are alternatives 
to subgoals in [30] and [32]. Integrate task and motion 
planning share the same principle with our work, except 
that we solve the specific task of assembly, and our con-
straints are from assembly sequences and 6D configura-
tions. These constraints are more complex than picking 
and moving and require robot to do regrasp [6]. In the 
assembly level, we check all combinations of the assembly 
and get a set of candidate assembly sequences. For each 
sequence, we perform motion planning in the motion 
level to manipulate the base object and to assemble the 
other object to the base. The planning in the assembly 

Fig. 1  The assembly sequences and motions in state-of-the-art robotic assembly system are manually programmed by technicians using teach 
pads: Human technicians figure out the assembly plan and program the robot to pick up and place down the base, and assemble the second 
object to the base (a). There are several candidate assembly sequences shown in (b), but the technicians manually select one of them using their 
experience. This paper proposes a novel system to do this automatically using integrated assembly and manipulation planning. a The snapshots of 
assembling two objects. In subfigures (1–2), the robot picks up the yellow object and places down it on the table as the base. In subfigures (3–4), 
the robot picks up the green object and assembles it to the base. b The possible assembly sequences. The left plot shows the goal. The other plots 
show different ways of selecting the base and different ways of attaching the second object
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level is integrated with the planning in the motion level 
and is done incrementally and recursively by searching 
regrasp graphs and invoking motion planning algorithms. 
If the motion planning algorithms cannot find a path in 
the motion level, we roll back to the assembly level and 
try another candidate assembly sequence or try a differ-
ent base until a solution is found or failure is reported.

Methods
Overview of the Integrated System
In our work, the integrated assembly and motion plan-
ning problem are solved incrementally and recursively 
by searching regrasp graphs and invoking motion plan-
ning algorithms. The overview of the integrated system 
is shown in Fig.  2. In the first component shown in the 
upper part of the figure, the system selects a base, com-
putes its placements on the table, and checks the pos-
sible sequences of assembling the second object to the 

placements of the base. The output of the first component 
is a set of candidate assembly sequences. In the second 
component shown in the lower part, the system checks 
each assembly sequence incrementally using regrasp 
graphs. Each object has an initial state and a goal state. 
The system computes all the stable placements of the 
object, connects them with the initial and goal states, and 
builds a regrasp graph. It searches the regrasp graph to see 
whether there is a direct motion or a sequence of regrasp 
motions that the robot can use to pick up the object from 
the initial state and place it down to the goal state. The 
regrasp graph is repeatedly built and searched for each 
object. If the search fails, the system starts over to choose 
a different candidate sequence or to select a different base.

The details of the two components will be explained in 
sections “Overview of the integrated system” and “The 
assembly planning component.” Before that, we list some 
essential symbols to facilitate readers. 

pX
s	� The position of Object X on a horizontal 

surface. We use A and B to denote the two 
objects, and consequently, pAs and pBs are 
used to denote the positions of the two objects 
where letter p indicates “position,” and the 
letter s indicates that the object is on a hori-
zontal surface. The notation could denote the 
initial placements or the positions of inter-
mediate placements on a horizontal surface, 
depending on the context.

RX
s	� The orientation of Object X on a horizontal 

surface. The letter p indicates “rotation.” Like 
pX

s, X is to be replaced by A or B. RX
s could 

denote the initial orientations or the orienta-
tions of intermediate placements on a hori-
zontal surface, depending on the context.

pX
a	� The position of Object X at its assembled state 

in the assembled structure’s local coordinate 
system. The letter a indicates that the object is 
at its assembled state.

RX
a	� The orientation of Object X at its assembled 

state in the assembled structure’s local coordi-
nate system.

pX
a(g)	� The position of Object X at its assembled state 

in global coordinate system. The letter g indi-
cates the value is described in global coordi-
nate system.

RX
a(g)	� The orientation of Object X at its assembled 

state in global coordinate system.
gX

f 	� The force-closure grasps of Object X. The 
letter f indicates the object is in a free area 
without any obstacles. It is neither in an 
assembled structure nor laying on any 

Fig. 2  Overview of the integrated assembly and motion planning 
system
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surface. X’s position and orientation are 
([0,0,0], diag(1, 1, 1)).

gX
s′	� The force-closure grasps of Object X on a hor-

izontal surface. Object X is at a placement on 
the horizontal surface. Its position and orien-
tation are (pX s, RX

s). The letter s indicates the 
grasps are associated with an object laying on 
a horizontal surface. The symbol f ′ indicates 
the grasps are raw, not necessarily collision-
free and IK-feasible (IK = inverse kinematics).

gX
s	� The collision-free and IK-feasible grasps of 

Object X on a horizontal surface. Object X is 
at a placement on the horizontal surface. Its 
position and orientation are also (pX s, RX

s). 
The collision-free and IK-feasible grasps are 
named accessible grasps.

gX
a(g)′	� The force-closure grasps of Object X at its 

assembled state. The grasps are described in 
global coordinate system. X’s position and 
orientation are (pXa(g), RX

a(g)). The symbol ′ 
indicates the grasps are raw, not necessarily 
collision-free and IK-feasible.

gX
a(g)	� The collision-free and IK-feasible grasps of 

Object X at its assembled state. The grasps 
are described in global coordinate system. X’s 
position and orientation are (pXa(g), RX

a(g)). 
The collision-free and IK-feasible grasps are 
named accessible grasps.

The assembly planning component
The goal of the assembly planning component is to find a 
set of candidate assembly sequences. The given input to 
the assembly planning component includes: (1) the rela-
tive poses of the two parts, (2) their geometric models, 
and (3) the position on the supporting table to do assem-
bly. Besides the given input, we assume that the second 
object is assembled to the base from inverse normal 
direction of the horizontal surface.

The input (1) means the values of pB
a-pAa and 

RB
a · (RA

a)′ are known. The input (3) means the position 
of the assembled base (xa, ya) on the table is known. By 
setting pAa as the original point and setting RA

a as the 
orientation of the assembled structure’s local coordinate 
system, the variables pXa and RX

a can be computed as 
follows

The assembly planning is done based on the placements 
of the base object. There are two phases in the assembly 

(1)pB
a = pB

a − pA
a
, RB

a = RB
a · (RA

a)′

(2)pA
a = [0, 0, 0]′, RA

a = I

planning component. The first phase is done in the 
assembly level. In the first phase, the assembly planner 
selects a base object (Object A for instance), computes 
all its stable placements on the table, attaches the second 
object to the base, and computes the collision-free poses 
of the second objects. We use a set {(pAp, RAp)} to denote 
the stable placements. For each (pAp, RAp), the planner 
computes an assembly candidate Ci using:

where

and

Ci is a triple where the first two elements indicate the 
pose of the base object and the pose of the second object 
assembled to it, respectively. The third element is the 
retraction of the second object from its assembled state 
along the normal of the supporting horizontal surface. 
The second object is ensured to be stable in the structure, 
not colliding with the environment, and assemblable 
along inverse the horizontal surface normal using expres-
sion (7, 8, 9).

In all, the first phase will output a set of candidate 
assembly sequences:

where n is equal or smaller than the number of sta-
ble placements of the base, depending on the collisions 
between the second object and the horizontal surface.

The meaning of the unexplained symbols in these 
equations is as follows. ht is the height of the horizon-
tal surface. It is a constant value. nt is the normal of the 
horizontal surface. (xa, ya) is the position on the hori-
zontal surface to do assembly. Object A is treated as 
the base object. (pBa(g), RB

a(g)) is the configuration of 
object B in its assembled state in the global coordi-
nate system. ([pBa(g) − k · nt ], RB

a(g) ) is the configu-
ration of Object B after being disassembled along the 
normal of the horizontal surface with a step length 
k. S(A(p,R),B(p,R) is TRUE is a logical expres-
sion that ensures the structure composed by the two 

(3)Ci = {(pA
a(g)

,RA
a(g)), (pB

a(g)
, RB

a(g)),

(4)([pB
a(g) − k · nt ], RB

a(g))}

(5)pA
a(g) = [xa, ya,pAp.z + ht ], RA

a(g) = RAp

(6)pB
a(g) = pA

a(g) + pB
a
, RB

a(g) = RA
a(g) · RB

a

(7)S(A(pA
a(g)

,RA
a(g)),B(pB

a(g)
,RB

a(g)) is TRUE

(8)C(B(pB
a(g)

,RB
a(g)), obstacles) is FALSE

(9)

C(V(B(pB
a(g)

,RB
a(g)), k · nt), obstacles) is FALSE

(10)C = {C1,C2, . . . ,Cn}
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objects at the given poses is stable (S indicates stable). 
C(X(p,R), obstacles) is FALSE is a logical expression 
that ensures the Object X at position p and orientation R 
does not collide with the obstacles (C indicates collision). 
C(V(X(p,R), k · nt), obstacles) is FALSE ensures the 
swept volume of Object X moving along nt with a step 
length k.

Take the two objects in Fig. 2 for example. The Object 
A has five (pAp, RAp) which are plotted in the first row 
of Fig.  3 using yellow color. The states after attach-
ing Object B to the placements of A are shown in the 
second row of blow each element of the first row. The 
third case in the second row is not stable. It is detected 
by expression (7). The unstable object is marked using 
light green. The fifth case collides with the surface, 
which is detected by expression (8). The collided object 
is marked using light pink. The remaining assemblies 
are stable and collision-free (objects are plotted in dark 
green). The stable and collision-free candidates are fur-
ther checked using expression (9) in the third row. All 
three cases in the third row passed the check and are 
outputted as C.

The output of the first phase is the output of the assem-
bly planning component and is performed offline. The 
second phase is part of the assembly planning compo-
nent, but it does not directly relate to the output. The 
algorithms in the second phase work in the motion level 
and are used online with graph building and searching in 
the regrasp and motion component. In the second phase, 
the assembly planer interacts with a grasp planner, loops 
through all elements in C, and finds IK-feasible and colli-
sion-free grasps that the robot can use move the objects 
during assembly. The output of the second phase is a 

subset of C where the objects are at collision-free states 
and graspable.

Beforehand, the planner sets the two objects at free 
space and computes the force-closure and collision-free 
grasps. Each grasp is represented using gX f={p0,p1,R} 
where p0 and p1 are the contact positions of the finger 
tips, and R is the orientation of the palm. The whole set 
is represented by gX f , which includes many gX f . Namely, 
gX

f  = {gX f }.
Given a triple Ci, the IK-feasible and collision-free 

grasps that the robot can use to assemble it are computed 
as follows

where

If none of the gXa(g) computed by the three pXa(g) and 
RX

a(g) in the triple is empty, the triple will be saved as a 
candidate assembly sequence and will be used to build 
the regrasp graph and do motion planning.

Figure 4 shows some details of the second phase. The 
left two plots of the first row show the gAf  and gBf  associ-
ated with the two objects in Fig. 2. The two objects are at 
free space in these two plots, and no obstacles are nearby. 
The grasps are plotted as segments to make them easy to 
recognize. The remaining three plots of the first row 
show the collision-free grasps when the two objects are 
assembled on a horizontal surface. The removed grasps 
either collide with the table surface or collide with the 
other object in the assembled structure. They are the 
results of applying CD (gX

a(g)′ , obstacles) to Ci(i=1,2,...). 
The results of further applying IK (gX

a(g)′) are shown in 

(11)gX
a(g) = IK (gX

a(g)′) ∩ CD (gX
a(g)′

, obstacles)

(12)gX
a(g)′ = RX

a(g) · gX
f + pX

a(g)

Fig. 3  The first phase of the assembly planning component. The first row shows the placements of the Object A in Fig. 2. The second row shows the 
states after attaching Object B to the placements. The third row shows the feasibility along the pre-defined assembly directions. Three cases in the 
third row are feasible and outputted as C by the first phase
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the second row of Fig. 4. Robot kinematics are considered 
in this case (Kawada Nextage1).

The regrasp and motion component
The input to the regrasp and motion component includes: 
(1) the initial states of the objects, which are obtained 
using vision systems, and (2) the goal states of the two 
objects, which are the assembled states and are included 
in the candidate set C produced by the assembly planning 
component. The regrasp and motion component incre-
mentally builds regrasp graphs using the initial state, the 
goal state, and the placements of each candidate in C. It 
recursively searches the regrasp graphs to find sequences 
of grasps and plans the motion between the grasps using 
motion planning algorithms.

Given the initial states or the placements of an object 
on the horizontal surface, say pX s and RX

s, the IK-fea-
sible and collision-free grasps that the robot can use to 
pick up the object at these states are computed as follows

where

Here Eqs. (13, 14) are similar to the ones in (11) and (12) 
except they are performed on the initial states.

Then, the regrasp and motion component builds a 
graph using the elements in gX s and gXa(g). Figure  5 
shows the flow using the Object B in Fig.  2. The initial 

1  http://nextage.kawada.jp/en.

(13)gX
s = IK(gX

s′) ∩ CD(gX
s′
, obstacles)

(14)gX
s′ = RX

s · gX
f + pX

s

pose of the object on the planery surface, namely pBs and 
RB

s, is shown in the upper-left plot. When assembled in 
the structure, its pose pBa(g) and RB

a(g) is shown in the 
bottom-left plot. The grasps gX s and gXa(g) associated 
with them are shown in the plots besides the two poses. 
They are rendered using colored segments where green 
means the grasp is both collision-free and IK-feasible. 
Blue means the grasp is collision-free, but IK-infeasible. 
The collided grasps are not shown. A regrasp graph is 
built based on the common grasps, the initial grasps, goal 
grasps, and some intermediate placements. The planner 
recursively searches the regrasp graph, finds a sequence 
of grasps, and employs transition-RRT to find a motion 
between the grasps. Note that the planning is done 
between the grasp associated with the initial states and 
the third element of the triple in Ci. Directly planning to 
the grasps associated with the first element is a narrow 
passage problem [33, 34] and should be avoided.

More details about the regrasp graph are shown in 
Fig. 6. It is basically the same as [29], except that we put 
the initial and goal states and their accessible grasps in the 
top and bottom layers, respectively. The top layer has only 
one circle which encodes the initial state of the object 
and its accessible grasps. The bottom layer also has only 
one circle which encodes the goal state of the object and 
its accessible grasps. The red arrows in the upper part of 
Fig. 5 show the relationship between the initial and goal 
state, their accessible grasps (collision-free and IK-feasible 
grasps, plotted as green segments in the figure), and the 
top and bottom layers of the regrasp graph. The middle 
layers are composed of several circles where each of them 
encodes a possible placement on a horizontal surface and 

Fig. 4  The left two plots of the first row show the gAf  and gBf  associated with the two objects in Fig. 2 when they are posed at free space. The 
remaining three plots of the first row show the collision-free grasps when the two objects are assembled on a horizontal surface. The two plots in 
the second row show the IK-feasible grasps of the two objects. The kinematic model is from the Kawada Nextage robot

http://nextage.kawada.jp/en
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its accessible grasps. The arrows in Fig.  6 show the cor-
respondence between the placements of Object B, their 
accessible grasps, and the circles in the middle layer.

Each node on the circles represents a grasp: The ones in 
circle of the upper layer are from gX s, and the ones in the 
circle of the bottom layer are from gXa(g). The ones from 
the circles in the middle layer are the grasps associated 
with the placements. The orientations of the placements 
are evenly sampled online. Their positions are fixed to a 
pre-defined position in front of the robot.2 If the circles 

2  The position can be optimized by computing the robot’s manipulability 
[21, 35].

share some grasps (grasps with the same p0, p1, R values 
in the object’s local coordinate system), we connect them 
at the correspondent nodes.

The regrasp and motion component searches the graph 
to find a sequence of grasps that manipulates the object 
from its initial state to the goal. For each adjacent pair in 
the grasp sequence, the regrasp and motion component 
repeatedly performs motion planning to find feasible 
motions. If no feasible motion was found, the component 
roll back to try a different sequence, a different triple in 
C , or use a different based.

The regrasp graph is repeatedly built for each object and 
is recursively searched for motion planning. The details 

Fig. 5  The flow of the regrasp and motion component. Given the initial and goal states of an object (in this case the Object B in Fig.2), we compute 
its accessible (collision-free and IK-feasible) initial and goal grasps, and use these grasps together with the grasps associated with the placements of 
the object on a horizontal surface to build regrasp graphs. These two steps are shown in the upper part of the flowchart. The green segments in the 
plots denote accessible grasps. The blue ones denote the IK-infeasible grasps. We recursively search the regrasp graphs to find a sequence of grasps 
and do motion planning repeatedly between the grasps to find a solution to the desired task. The robot configurations in the lower part of the 
flowchart show as a sequence of grasps obtained by searching the regrasp graph
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of the repetition and recursion are summarized in Fig. 7. 
Incrementally for each element in the candidate set, the 
component builds the regrasp graph and performs motion 
planning. If the planning succeeds, the component reports 
“found,” and otherwise, it tries a different element from 
the candidate set. If all elements in the candidate set are 
visited, the component tries a different base. Exemplary 
results will be shown in the experimental section. A dis-
advantage of the incremental process is the time cost that 
may approach infinity. To avoid that, we also employed a 
time limit in implementation. When planning time goes 
over the limit, our system reports failure.

Results and discussion
We perform both simulation and real-world experiments 
to demonstrate the efficacy of the integrated assembly 
and motion planning system. The computer used to com-
pute the grasps and motions is a Dell T7910 workstation 

(Processor: Intel Xeon E5-2630 v3 with 8CHT, 20MB 
Cache, and 2.4GHz Clock, Memory: 32G 2133MHz 
DDR4). The robot used to perform real-world experi-
ments is Kawada Nextage Open. The relative poses 
between the two objects are obtained in advance using a 
teaching system.3 The repeatedly invoked motion plan-
ning algorithm is transition-RRT [37].

Figure 8 shows two failure cases of the repeated graph 
building and the recursive searching. In the upper row of 
these figures, the system selects the Object A as the base 
and tries the assembly sequence shown in the left. It is the 
first element of the candidate assembly sequence C. The 
system builds the regrasp graph and searches the graph 
to do motion planning in (1–6). In details, the system 
checks the accessible grasps (the green plots) associated 
with the initial and goal states, and uses them to build the 
regrasp graph in (1). Then, the system searches the graph 
and does motion planning to transfer the Object A from 
the initial state to the goal in (2–4). In (5–6), the system 
checks the accessible grasps associated with the second 
object’s initial and goal states. Since there is no accessible 
grasps (no green plots) associated with the goal state, the 
system cannot build the third layer of the regrasp graph 
and cannot find a path. It reports failure and rolls back to 
use a different assembly sequence.

In the lower row, the system uses the same base but 
tries a different assembly sequence in C. It builds and 
searches the graph and performs motion planning in 
(7–12). Like (1), the system checks the accessible grasps 

3  The basic principle is human beings teach the relative poses of the two 
objects in front of a camera using AR markers. The details can be found 
in [36]. Practitioners may also use CAD software to pre-define the relative 
poses.

Fig. 6  More details about the regrasp graph. The regrasp graph has three layers where the top layer and the bottom layer have one circle , respec-
tively. They encode the initial and goal states and their accessible grasps. The correspondence has been shown by the red arrows in Fig. 5. The 
middle layer encodes the placements on horizontal surfaces and their accessible grasps. The four placements and their accessible grasps of Object 
B are plotted in the figure. Their correspondent circles in the middle layer are denoted using red arrows. By searching this regrasp graph, the planner 
finds a sequence of grasps. The sequence may include some intermediate nodes like the one shown in the lower part of Fig. 5. It may also connect 
directly from the initial state to the goal

Fig. 7  Details of the repeatedly graph building and the recursive 
search. The algorithm in the component incrementally uses each 
element in the candidate set to do motion planning. If fails, it tries a 
different element or a different candidate until all possibility is tested
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of the base object’s initial and goal states, and builds 
a graph in (7). Then, it searches the graph, performs 
motion planning, and successfully finds a way to transfer 
the base object to the goal. In (11–12), the system checks 
the grasps of the second object and finds all grasps at the 
goal are not accessible. It reports failure and rolls back to 
another assembly sequence again. The searching and roll-
ing back process continues incrementally until a solution 
is found or all bases and sequences are tried.

Figure 9 shows a successful case. Here, the system tries 
the third assembly order in C. Like the flow in Fig. 8, the 
system computes the grasps associated with the initial 
state and goal state of the base object in (1). The acces-
sible grasps are rendered in green. They correspond to 
the top and bottom layer of the grasp shown in (1’). In 
(2), the system chooses one candidate from the accessible 
grasps and does motion planning to pick up the object. 
The selected grasp corresponds to one node in the top 
layer of the graph, which is marked with red color in (2’). 
In (3), the robot picks up Object A and transfers it to the 
goal state using a second motion planning. This corre-
sponds to an edge in (3’) which connects the node in one 
circle to the node in another. The edge directly connects 
to the goal without any intermediate placements. After 
that, the robot moves its arm back at (4), which corre-
sponds to a node in the bottom layer of the graph shown 
in (4’). In (5), the system computes the grasps associated 
with the initial and goal states of the second object. The 
accessible grasps are rendered in green and correspond 
to the nodes in the top and bottom layer of the regrasp 
graph shown in (5’). Both initial and goal states have 
accessible grasps, and it is possible to build the regrasp 
graph for the second object this time. In (6), the system 
chooses one feasible grasp and does motion planning to 
pick up the object. The selected grasp corresponds to the 

marked node in (6’). In (7), the robot picks up Object B 
and assembles it to its goal state using a second motion 
planning which corresponds to an edge in (7’). Finally, the 
robot moves its arm back at (8) and (8’).

The subfigures (2”–4”) and (6”–8”) in the third row 
show how the robot executes the planned motion. They 
correspond to (2–4), (6–8) and (2’–4’), (6’–8’) in the 
first two rows. The whole process is divided at (4/4’/4”) 
and (5/5’/6”) where (1/1’/2”–4/4’/4”) are picking-up and 
placing-down the base object and (5/5’/6”–8/8’/8”) are 
assembling the second object to the base. A video clip 
that shows both the simulation and real-world execu-
tion is available online at: https://www.youtube.com/
watch?v=MAT6ucmTRnE.

Conclusions
This paper presented an integrated assembly and motion 
planning system which recursively find how to assemble 
two objects with the help of a horizontal surface as the 
supporting fixture. The system decides (1) which object 
is used as the base, (2) how to place the base, and (3) how 
to assemble the second object to the base. It can find a 
feasible solution to assemble two objects with complete-
ness. The proposed system is expected to help robot per-
form assembly tasks automatically, and take the place 
of the technicians who manually specify the assembly 
sequences using their experience.

 Currently, the assembly is limited to two objects. 
Increasing the number of objects would lead to exploded 
combinatorics and is computationally infeasible. It is 
therefore a challenging open problem to plan the inte-
grated assembly of more than two objects. In our most 
recent work [38], we studied a simplified version of this 
open problem and solved the assembly sequences of 3, 4, 
and 5 objects with a fixed final assembly pose. Interested 

Fig. 8  Two failure cases during the repeated graph building and recursive searching. These two cases use the first and second elements in the 
candidate assembly sequence of the two objects shown in Fig. 2 to build the regrasp graphs and do motion planning. Both of them failed since 
there are no accessible grasps to place down the second object to its goal states. After each failure, the planner incrementally switches to different 
candidates

https://www.youtube.com/watch?v=MAT6ucmTRnE
https://www.youtube.com/watch?v=MAT6ucmTRnE
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readers are recommended to read the paper. Another 
limitation of the work is that assembly motion is limited 
to translation. Assembly with rotation is a difficult prob-
lem and remains unsolved. The difficulties include plan-
ning a specific twist and detecting and taking advantages 
of contacts. This paper cannot tackle assembly with rota-
tion and is limited to assembly with translational motion. 
Also, the current system is kinematic. We will add force 
control to the system in the future and use it to challenge 
real-world assembly tasks.
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