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Abstract 

The loop closure detection (LCD) is an essential part of visual simultaneous localization and mapping systems (SLAM). 
LCD is capable of identifying and compensating the accumulation drift of localization algorithms to produce an 
consistent map if the loops are checked correctly. Deep convolutional neural networks (CNNs) have outperformed 
state-of-the-art solutions that use traditional hand-crafted features in many computer vision and pattern recogni-
tion applications. After the great success of CNNs, there has been much interest in applying CNNs features to robotic 
fields such as visual LCD. Some researchers focus on using a pre-trained CNNs model as a method of generating an 
image representation appropriate for visual loop closure detection in SLAM. However, there are many fundamental 
differences and challenges involved in character between simple computer vision applications and robotic applica-
tions. Firstly, the adjacent images in the dataset of loop closure detection might have more resemblance than the 
images that form the loop closure. Secondly, real-time performance is one of the most critical demands for robots. In 
this paper, we focus on making use of the feature generated by CNNs layers to implement LCD in real environment. 
In order to address the above challenges, we explicitly provide a value to limit the matching range of images to solve 
the first problem; meanwhile we get better results than state-of-the-art methods and improve the real-time perfor-
mance using an efficient feature compression method.
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Background
A simultaneous localization and mapping systems 
(SLAM) algorithm aims to map an unknown environ-
ment while simultaneously localizing the robot. Loop 
closure detection (LCD) is the technique of determin-
ing whether a mobile robot is back to a previously visited 
location, and it is critical for building a consistent map of 
the environment by correcting the localization errors that 
accumulate over time. Therefore, LCD is considered one 
of the most essential techniques in SLAM. To develop a 
LCD algorithm, one class of popular and successful tech-
niques is based on matching the current view of the robot 
with those corresponding to previously visited locations 
in the robot map. In this case, LCD becomes an image 

matching problem, which typically includes two steps, 
image description and similarity measurement.

The state-of-the-art algorithms take advantage of the 
bag-of-words (BoW) model [1–3] to describe images. 
The BoW model clusters the visual feature descriptors 
in images, builds the dictionary, and then finds the cor-
responding words of each image. The BoW model is com-
monly used in visual features like SIFT [4], Surf [5] which 
have achieved great success in the past years. Despite 
significant progress in visual LCD, challenges still remain 
especially in dynamical and large-scale environment. 
As robots aim at long-term autonomous operations in 
the long period of time, such as days, weeks, or months, 
they are faced with environment that can undergo dra-
matic condition change and viewpoint change over time. 
Unfortunately, the hand-craft methods can not deal with 
these situations very well. Recent progress in the com-
puter vision and machine learning community has shown 
that the features generated by convolutional neural net-
works (CNNs) outperform other methods in a variety of 
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visual recognition, classification, and detection applica-
tions [6]. CNNs have been demonstrated to be versatile 
and transferable, that is to say, even though they were 
trained on a very specific target task, they can be success-
fully used for solving different problems and may outper-
form traditional hand-craft features [7, 8].

However, when we actually use these features gener-
ated by CNNs layers in a practical environment, two chal-
lenges appear. Firstly, the adjacent images in the dataset 
of LCD might have more resemblance than the images 
that really form the loop closure, so the algorithm tends 
to identify the adjacent images as loop closure, which is 
certainly not preferred. Secondly, the feature matching 
is computationally intensive because the dimension of 
features generated by CNNs may be very large, and LCD 
may have to compare the current image to a large amount 
of pre-captured images in order to decide whether the 
robot returns to previously visited positions. This can 
not satisfy strong request for real-time performance in 
robotic applications.

Against the background, in this paper we provide two 
solutions to address the above two challenges. Firstly, we 
explicitly provide matching range of candidate images 
to prevent images matching with their adjacent images. 
Meanwhile, we get better performance than state-of-the-
art algorithms by adapting the matching range. Secondly, 
we provide a efficient feature compression method to 
reduce the dimension of feature generated by CNNs lay-
ers, which boosts real-time performance with marginal 
performance loss.

The rest of this paper is organized as follows. “Related 
work” section gives a brief introduction to the related 
work on LCD, CNNs, and datasets used in our subse-
quent experiments. In “Matching-range-constrained vis-
ual loop closure detection” section we present the details 
of Places CNNs model and how it is used to generate 
image descriptors. “Real-time large-scale visual loop clo-
sure detection” section shows algorithm and experiment 
results on the compression algorithm to realize real-time 
LCD. Finally, we conclude the paper in “Conclusions” 
section with a short discussion and future work.

Related work
Loop closure detection
The focus of research in LCD has recently moved from 
recognizing previously visited place without significant 
appearance changes [9, 10] to more realistic dynami-
cal environment. Methods that address the LCD prob-
lem span from matching sequences of images [11, 12], 
transforming images to becoming invariant against 
common scene changes such as shadows [13, 14], learn-
ing how environments change over time and predict-
ing these changes in image space [15−17], building up 

LCD hypotheses over time [18, 19], and building a map 
of experiences that cover the different appearances of a 
place over time [20].

Deep convolutional neural network based feature
Previous works mostly relied on the hand-crafted tradi-
tional features or operated on the raw pixel levels [21]. 
These hand-crafted features are designed by experts hav-
ing a lot of domain-specific knowledge. However, robot 
may be faced with a variety of complex and changeable 
environments during the process of localization. So it is 
very challenging for any people to take all factors affect-
ing the performance of visual LCD into consideration.

Recently, there has been a trend in exploiting features 
generated by CNNs in computer vision, especially in the 
field of object recognition and detection [6]. A compre-
hensive evaluation further demonstrates the advantages 
of deep CNNs features with respect to shallow hand-
crafted feature for image classification [22]. The advan-
tage is that researchers will be free from mastering the 
knowledge of specific domains and the CNNs architec-
ture can be used for many different domains, especially 
in visual systems with minor changes. CNN is a well-
known architecture proposed by LeCun et  al. [23] to 
recognize hand-written digits. Several research groups 
have recently shown that CNNs outperform classical 
approaches for object classification or detection that are 
based on hand-crafted features [8, 24]. The open-source 
software Caffe [25] provides pre-trained CNNs archi-
tectures for a variety of recognition tasks, which greatly 
reduces the difficulty in deploying and training CNNs for 
different tasks.

Hou et al. [7] were the pioneers to consider using fea-
tures generated by CNNs layers for visual LCD. They use 
a public pre-trained CNNs model, Places CNNs, trained 
on the scene-centric dataset Places [26] with over 2.5 
million images of 205 scene categories, as an efficient 
whole-image descriptor generator for LCD. They com-
prehensively compared the performance of Places CNNs 
model’s all layers by using the euclidean distance as the 
similarity measurement. Their work demonstrated that 
the pool5 layer provides the best image descriptors in 
terms of both detection accuracy and dimension of fea-
ture among all Places CNNs descriptors.

Dataset
Experiments are conducted on two publicly available 
datasets with known frame correspondences, City Centre 
and New College built by Cummins et al. [9], firstly used 
by their loop closure detection algorithm called FAB-
MAP. These two datasets are viewpoint change datasets 
widely used in visual SLAM research and in LCD in par-
ticular. The two datasets contain 2474 and 2146 images, 
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respectively. Images are numbered sequentially in the 
order of collection. The camera was mounted on a pan-
tilt and collects images from the left and right of the 
robot. Image collection was triggered every 1.5 m (on the 
basis of odometry) by the robot when it is driven through 
an outdoor urban environment with stable lighting con-
ditions. The vehicle is in motion while the images are col-
lected, so the robot travels same distance between the 
collection of the right and left images. Obviously, these 
two datasets exhibit strong viewpoint change. Ground 
truths in terms of true loop closures are also available. 
Details of these two datasets are available online.1

Matching‑range‑constrained visual loop closure 
detection
In this section, we first explain the reason for setting the 
matching range and choose the matching range by evalu-
ating the precision–recall performance.

Image descriptor
In our experiment, we use the Places CNNs model 
trained on a scene-centric database [26] and constructed 
by Caffe [25]. The architecture of this pre-trained CNNs 
model is briefly summarized in Table  1. This CNNs 
model is a multi-layer neural network that mainly con-
sists of three types of layers: five convolutional layers, 
three max-pooling layers and three fully connected lay-
ers. Note that a max-pooling layer only follows the first, 
second, and fifth convolutional layer but not the third 
and fourth convolutional layers.

Image matching
By using pre-trained CNNs model, we can create an 
image descriptor from each layer in the CNNs. That is, 
when we provide an image to CNNs, the output of each 
layer of CNNs is considered as a feature vector u of the 
image. In addition, we normalize these feature vectors to 
be unit vector U. We adapt the precision−recall curve as 
the performance evaluation criteria and euclidean dis-
tance for similarity measurement. The precision−recall 
curve is a standard evaluation method widely used in 
pattern recognition and in LCD particularly. To produce 
the precision−recall curve of a given image descriptor 

1 http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/.

from CNNs layers, we compute feature vector U of the 
current view of robot and then find its nearest neighbor 
in the robot map that corresponds to previously visited 
locations according to the euclidean distance. Then we 
set a threshold on the euclidean distance to determine 
whether loop closure can be accepted, and we get preci-
sion and recall pairs by comparing our results with the 
ground truth of the dataset after all images in the dataset 
are considered. Finally, we can produce the precision−
recall curve by varying the value of the threshold.

Matching‑range setting
The feature provided by pool5 is an efficient whole-image 
descriptor in the application of visual LCD, the robot col-
lects one image every 1.5 m, so the pool5 may generate 
more resemblance descriptors for adjacent images than 
the images forming actual loop closure by the euclid-
ean distance measurement. For example, the distance 
between the 1399th and 1401th image is 0.2342 and 
the distance between 349th and 1401th is 0.3302; obvi-
ously the 1399th image is more similar to 1401th image 
than the 349th image. The algorithm without setting the 
matching range would believe the 1399th and 1401th 
image form the loop closure (these images are all cho-
sen from City Centre and are shown in Fig.  1). But the 
distance between the collection of the 1399th image and 
the 1401th image is only 3 m, due to the robot collected 
images every 1.5  m, while the ground truths reveal the 
image really matching the 1401th image is 349th image. 
In this situation, the algorithm will get a number of errors 
and greatly degrade its performance.

In order to deal with this problem, we provide a con-
straint to limit the matching range of images for the 
current position to determine the loop closure image. 
Concretely, if the current image number is N and the 
number of excluded images is L, the algorithm will only 
determine whether loop closure appears only from the 
image number 1 to image number N − L. If the range 
is set properly, the distance (on the basis of odometry) 
between the image N − L and image N is long enough 
so that the difference of descriptors generated by pool5 
between the image N and the image N − L is distinguish-
able for the LCD algorithm. In this case, the above prob-
lems can be properly addressed. The precision−recall 
curve for different matching ranges on the City Centre 
and New College dataset is shown in Fig. 2 given different 

Table 1 Architecture of the Places CNNs model and the dimension of the feature of each layer

Convolutional Fully connected

Layer CONV1 POOL1 CONV2 POOL2 CONV3 CONV4 CONV5 POOL5 FC6 FC7 FC8

Dimension 290,400 69,984 186,624 43,264 64,896 64,896 43,264 9216 4096 4096 1000

http://www.robots.ox.ac.uk/%7emobile/IJRR%5f2008%5fDataset/
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L values. Specifically, the L = 0 curve represents the case 
where the current image is compared with all previous 
images, and the resulted precision−recall performance 
is very poor due to high resemblance with the adjacent 
images, which do not form loop closures.

For the sake of evaluating the effects of matching 
ranges on LCD performance, we implement the algo-
rithm with different L values on the City Centre and 
New College dataset. Figure  2 shows the resulting pre-
cision−recall curves for various experimental settings. 
The experiments show that performance improves as 
the L value increases at the beginning and then degrades 
drastically as shown in L = 1200 in Fig. 2a. The reason 
of this phenomenon is that, at first, the increase in the 
number of excluded images can reduce likelihood of 
occurrence of above problem; however, if the algorithm 
excludes too many images will result in a small match-
ing range for an image, which may lead to the case that 
no images in the matching range can really form loop 

closure with current image revealed by the ground truth, 
but the LCD algorithm will still identify a “wrong” image 
for the current image to form loop closure based on 
euclidean distance.

As shown in Fig. 2a, in the City Center dataset, L = 800 
achieves the best precision−recall performance. If the 
precision is guaranteed to be 100 %, the achievable recall 
is approximate 10  % better than the benchmark pro-
posed in [7] and 35  % better than the benchmark FAB-
MAP proposed in [9]. Figure 2b illustrates the effects of 
selected L values on the performance in the New College 
dataset, where the L = 100 is optimal. If the precision is 
guaranteed to be 100 %, the algorithm achieves compa-
rable recall performance with FAB-MAP [9]. Therefore, 
the optimal searching range settings represented by L 
depends on the dataset, which reflects the explored envi-
ronments and the chosen routing of the robots. Hence, 
we are investigating the methodology of training L via 
on-line observations, which is left for our future works.

Fig. 1 Three example images of City Centre dataset. a NO.0349, b NO.1399, c NO.1401

a b
Fig. 2 Visual loop closure detection precision−recalls on City Centre dataset and New College dataset use feature generated by pool5 with differ-
ent value L. a Precision−recalls on City Center dataset, b precision−recalls on New College dataset
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Real‑time large‑scale visual loop closure detection
The results have demonstrated that by setting proper 
matching ranges, the features from layer pool5 is robust 
against viewpoint change on City Centre and New Col-
lege dataset. However, computing the euclidean distance 
between many 9216 dimension pool5 feature vectors may 
become a computationally intensive operation and a bot-
tleneck of the real-time performance. Therefore, directly 
using the features extracted by pool5 may not satisfy real-
time demand of robotic application, especially in large-
scale scenes. Hence, the high-dimensional CNNs features 
may be compressed as in [27]. In this section, we explore 
the power of locality-sensitive hash (LSH) functions 
to address the challenge. The results demonstrate that 
speed-ups of four to seven times can be achieved with 
negligible performance degradation in terms of the preci-
sion−recall metric.

Feature compression
As the dimension of feature extracted by pool5 is very 
large, we naturally think of compressing the feature to 
low-dimensional vectors to accelerate LCD algorithm. 
We adopt the LSH method proposed by Charikar [28], 
which uses random hyperplanes to generate an LSH 
function. This algorithm can preserve the cosine similar-
ity between vectors and shapely reduces the dimension of 
vectors, which in turns greatly reduces the time of calcu-
lating our feature distance similarity matrix.

However, the compression may be achieved at cost of 
performance degradation on detection accuracy. There-
fore, we generate compression features for all images in 
City Centre and New College dataset with various com-
pression ratios to find the trade-off between real-time 
and precision−recall performance.

Image matching
The benchmark we adopted is non-compressed cosine 
similarity, which calculates the normalized inner product 
of two original features expressed as

where θ(u, v) is the angle between the vectors u and 
v. |u · v| is the inner product of u and v, and |u| and |v| 
represent the length of vectors u and v, respectively. 
Following the random hyperplanes strategy in [29], the 
LSH proposes to use a collection of random vectors in a 
k-dimensional vector space. We first generate a spheri-
cally symmetric random vector r of unit length from this 
k-dimensional space. We then define a hash function, hr , 
as:

(1)cos(θ(u, v)) =
|u · v|
√
|u||v|

,

(2)
hr(u) =

{

1 r · u ≥ 0

0 r · u < 0
,

For vectors u and v, we have

which is proved by Goemans and Williamson [30] and 
reveals that the probability of a random hyperplane sepa-
rating two vectors is proportional to the angle between 
the two vectors (i.e., θ(u, v)). From Eq.  (3) we may infer 
that

According to Eq. (4), we can get Pr[hr(u) = hr(v)] by the 
calculation of hamming distance2 between the vectors u 
and v. It is noted that the cosine similarity measurement 
is also equivalent to the euclidean distance measurement 
for normalized vectors. Hence, the hamming distance 
measurement is equivalent to euclidean distance meas-
urement used in our previous experiments. In addition, 
the computation of hamming distance between two bit 
vectors has many advantages in comparison with euclid-
ean distance, such as time and memory saving. Intui-
tively, Eq.  (4) is stochastic, and based on numerical 
evaluation, we should generate sufficient random hyper-
plane to achieve more satisfactory approximation. As we 
generate a larger number d of random vectors, the ham-
ming distance may estimate the euclidean distance 
between two vectors more accurately, however, at the 
cost of increasing the amount of computation. Hence, we 
should choose a proper d to strike a beneficial trade-off 
between the approximation accuracy and the computa-
tion complexity.

Algorithm implementation
In the previous subsection, we introduced the algorithm 
for feature compression. The complete algorithm for the 
LCD is as follows:

1 Firstly, we produce n feature vectors generated by 
CNNs layer of pool5 (for City Centre and New Col-
lege dataset, n is equal to 2474 and 2146, respec-
tively) using Caffe [25].

2 Secondly, we generate d (d < k) unit random vec-
tors {r0, r1, . . . , rd}. Each ri has k elements (for feature 
extracted by pool5, k = 9216), and each elements is 
sampled from a Gaussian function with mean 0 and 
variance 1. We then put the d vector {r0, r1, . . . , rd} 
together into a matrix D of dimension k × d.

3 Thirdly, we produce the inner product between D 
and every feature vector v with dimension of k to 

(3)Pr[hr(u) = hr(v)] = 1−
θ(u, v)

π
,

(4)cos(θ(u, v)) = cos((1− Pr[hr(u) = hr(v)])π),

2 Hamming distance is the number of bits which differ between two 
binary strings. Thus, the hamming distance between two strings A and B is 
∑

i
|Ai − Bi |.
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get vector u = DTv. Then, for every vector u, we 
use the function hr(u) [as Eq.  (2)] to produce com-
pressed feature ū as: ū = {hr1(u), hr2(u), . . . , hrd(u)} . 
Hence, each compressed feature is represented by a 
bit stream of length d. The time complexity of steps 2 
and 3 is O(nkd) time.

4 For every image in the City Centre and New College 
dataset, we produce its compression feature vector 
ū and then find its nearest neighbor from the previ-
ous images in the dataset by calculating the hamming 
distance of their compressed features. The time com-
plexity of this step is O(n2d).

5 Overall, the time complexity of the total algorithm is 
O(nkd + n2d) to calculate the full similarity matrix. 
However, the time complexity of using the cosine 
similarity to produce the full similarity matrix would 
be O(n2k). For large-scale LCD, n must be very large, 
so we can get great speed-up factor from the algo-
rithm. Further more, with the increase in n, the algo-
rithm will achieve greater speed-up factor.

Evaluation
In this paper, we implement the algorithm and com-
pare the visual LCD performance achieved with the 
compressed feature vectors of pool5 of different lengths 
d =  (128, 256, 512, 1024, 2048) bits on the City Centre 
and New College datasets in Fig.  3. Since the hamming 
distance over bit vectors is more computationally effi-
cient, the best-matching image among 2474 candidates 
can be found within 5.67  ms on a standard desktop 

machine with a 3.60-GHz CPU with four cores and 8GB 
memory. This corresponds to a speed-up factor of ~4 
compared to the algorithm that uses the euclidean dis-
tance over the original pool5 features, which required 
21.3476  ms for each candidate. Calculating the hashes 
requires 1.0913ms using a non-optimized Python imple-
mentation. Table 2 summarizes the required time for the 
main algorithmic steps. We can see that the LSH ena-
bles real-time visual LCD using CNNs-based features on 
large-scale places.

Conclusions
Our paper presented a thorough investigation on the 
effects of matching range for CNNs-based LCD. By 
proper selecting the matching range, we get better per-
formance than the state-of-the-art algorithms on the City 
Centre and New College dataset. In addition, we pro-
vide acceleration solutions for large-scale real-time LCD 
by using a specialized LSH method to compress high-
dimensional CNNs features.

Note that our study is still preliminary at this point since 
the matching range is dataset-sensitive and chosen manu-
ally in this paper. In our future works, we will employ 
machine learning algorithm to enable the LCD algorithm 
autonomously finding the optimal matching ranges for 
various datasets. Also, we may use the point location in 
equal balls algorithm [31] to accelerate the process of 
finding most similar images for current viewpoint. Also, 
we plan to train CNNs specifically for the task of LCD 
under dynamic environment to get a better descriptor.

a b
Fig. 3 Hamming distance over the original feature vectors of 9126 generated by pool5 can be closely approximated by the hamming distance over 
bit vectors of length 1024 with marginal precision loss. a City Centre dataset, b New College dataset
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Table 2 Runtime comparison between original features and compressed features

Original pool5 128 bits 256 bits 512 bits 1024 bits 2048 bits

Feature compression – 0.1492 ms 0.2822 ms 0.5493 ms 1.0913 ms 2.1550 ms

Match 1000 candidates 21.3476 s 3.3334 s 3.4750 s 3.8738 s 4.5803 s 5.8495 s
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