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Abstract

Aiming to develop an noninvasive BMI control system with EEG (electroencephalogram) signals to control external
devices such as prostheses and robots for rehabilitation and/or power support, four different tasks corresponding to
different brain excitation degrees are designed. Their EEG spectra are analyzed with short-time fast Fourier transform
(STFFT), and their features of mu and beta rhythms corresponding to the different tasks are extracted. The extracted
features are used to control a one-joint robot arm and their corresponding results are compared. The results show
that the EEG signal when a subject is holding a weight is comparatively more stable than the EEG signals in other tasks
such as motor imagery. This implies an effective way for power assist by EEG signals.
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Background
Brain-machine interfaces (BMIs) are a technology that
allow interaction between humans and artificial devices.
They rely on continuous, real-time interaction between
living neuronal tissue and artificial effectors. The past
decade has seen a fast growing interest to develop various
effective BMIs that can be invasive or noninvasive. Inva-
sive BMIs, which derive the subject’s intent from neuronal
action potentials or local field potentials recorded within
the brain, are being studied mainly in nonhuman primates
[1-7]. Recently, prosthetic devices controlled by a human
subject with invasive BMI is reported [8]. Though these
invasive BMIs have made great success, they face sub-
stantial technical difficulties and entail significant clinical
risks: they require that recording electrodes be implanted
in the cortex and function well for long periods, and they
risk infection and other damages to the brain. The efforts
to develop them, despite these disadvantages, are based on
the widespread belief that only invasive BMIs will be able
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to provide users with real-time multidimensional control
of a robotic arm or a neuroprosthesis.
On the other hand, noninvasive BMIs for human users

derive the user’s intent from scalp-recorded electroen-
cephalogram (EEG) activity. Because these systems do
not require invasive surgical implants, they can be used
for wide range of applications. Up so far, they have been
mainly used for cursor control and communication by
means of selection of letters or items on a computer screen
[9-11]. Recently, an electrical powered wheelchair is con-
trolled by noninvasive BMI [12]. However, despite having
the great advantage of not exposing the subject to the risks
of brain surgery, EEG-based techniques provide commu-
nication channels of limited capacity. In this study, we
not only use EEG signals as communication tool but also
use them as control signals of external artificial devices.
Therefore, one of our main purposes here is to find and
extract stable EEG signals by task design and use the
signals to control an external robot for power assist.
In awake people, primary sensory or motor cortical

areas often display 8 to 12 [Hz] EEG activity when they
are not engaged in processing sensory input or produc-
ing motor output. This idling activity is called μ rhythm
when focused over the somatosensory or motor cortex.
These μ rhythms are usually associated with 13 to 30 [Hz]
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β rhythms. While some β rhythms are harmonics of μ

rhythms, some are separable from them by topography
and/or timing and thus are independent EEG features.
Note that they do not require actual movement, and they
occur also withmotor imagery [9]. A voluntary movement
results in a circumscribed desynchronization (decrease)
in the μ and lower β bands. This decrease is called
event-related desynchronization (ERD) and begins in the
contralateral rolandic region about 2 s prior to the onset
of a movement and become bilaterally symmetrical imme-
diately before execution of movement. After a voluntary
movement and with relaxation, the power in the brain
rhythms increases. This phenomenon called event-related
synchronization (ERS) is dominant over the contralateral
sensorimotor area and reaches amaximum around 600ms
after movement offset [13].
Because BMIs do not depend on nerves or muscles,

BMIs are conventionally and mainly used to provide
communication and control to people with severe neuro-
muscular disorders such as amyotrophic lateral sclerosis
(ALS), brainstem stroke, cerebral palsy, and spinal cord
injury. Besides, to achieve the above purposes, this study
also aims to construct a BMI that can be used to con-
trol robotic devices to help healthy people (e.g. caregivers)
with power assistance.
In this study, aiming to develop a BMI control system

with EEG signals to control external devices such as pros-
theses and robots for rehabilitation and/or power support,
four different tasks corresponding to different brain exci-
tation degrees are designed. Their EEG spectra are ana-
lyzed with short-time fast Fourier transform (STFFT), and
their features of μ and β rhythms corresponding to the
different tasks are extracted. The extracted features are
used to control a one-joint robot arm and their corre-
sponding results are compared. The results show that the
EEG signal when a subject is holding a weight is com-
paratively much stabler than the EEG in other cases such
as motor imagery. This implies the possibility of power
assistance using EEG signals.

Overview of the research
Several factors suggest that μ and/or β rhythms from
the sensorimotor cortex could be good signal features
for EEG-based communication and control. In this study,
these two sensorimotor μ and β rhythms, generated in
motor imagery or motion, are used to control a robotic
arm.
In order to steadily and effectively get EEG signals, in

this study, four different tasks corresponding to the differ-
ent brain excitation degrees are designed. Their features
of μ and β rhythms corresponding to the different tasks
are extracted with their EEG spectra by STFFT, and a
one-joint robot arm is controlled by the extracted fea-
tures. Then, the control results using the EEG signals from

these four tasks are compared to determine which task is
more appropriate for robot control. The procedures of the
research are as follows.

1. Design four different experimental tasks: idling task,
gazing task, motion imagery task, and motion task. In
these four tasks, the brain excitation degree gradually
increase task by task. Hence, their corresponding μ

and/or β rhythms should have different changes.
2. Acquire the EEG signals in each task into computer

for analyzing.
3. Divide the obtained EEG signals at a time interval of

256 ms with 206-ms overlap to get a series of the
short-time windows.

4. Perform STFFT to the EEG signals in each divided
short-time window repetitively to get their power
spectra. In this way, the power spectra of EEG signals
are obtained while their time information is also
kept. The time information of EEG signals is very
important for control.

5. Take the obtained power spectrum magnitudes of μ
and β rhythms as the features of the motion imagery
or motion.

6. Convert the power spectrum magnitudes of μ and β

rhythms into the target angles of the robot arm and
control the robot arm.

With the above steps, a one-joint robot arm is controlled
with EEG signals and the control results are obtained.
These results are compared to determine which of the
tasks is the most suitable for robotic control and power
assist.

Methods
Measurement and signal processing of EEG
Acquisition of EEG signals
In this study, the EEG signals of one of two subjects (two
healthy 20’s young men) are measured while the subject
is sitting in a chair as shown in Figure 1. The electrodes
embedded in a head cap are positioned in the Interna-
tional 10-20 system of electrode placement. The cap is so
worn that the position Cz is right at the top of the sub-
ject’s scalp, and the cap is firmly held on the head with
a belt passed through the subject’s chest. The embed-
ded electrodes do not directly contact to the scalp of
the subject. Instead, electrolytic gel is poured into the
electrode holes with a special syringe to suppress the
contact impedance between the electrodes and the scalp.
The EEG signals over the contralateral sensorimotor area
(C4 to A2) are measured. The signals are assumed to be
corresponding to the movement of the subject’s left arm.
Position Cz (the top of the scalp) is used as ground, and
the right wrist is used as body earth. The sampling fre-
quency is 1 kHz. The EEG signals are amplified 10,000
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Figure 1Measurement of EEG signals.

times by an amplifier (g.BSamp, g.tec Co., Austria). Then,
the signals are acquired through 12-bit A/D converters
in a multi-functional interface board and further pro-
cessed online on a PC running real-time operation system.
In our case, shield room is not used in consideration
of our BMI system which would be used in daily life.
The extracted EEG signals are used to drive a one-joint
robot arm like the subject flexing his elbow joint. The
robotic arm is also controlled with real-time operation
system.

Extraction ofμ and β rhythms
Sensorimotor rhythms (SMRs) include an arch-shaped μ

rhythm, usually with a frequency of 10 Hz (range 8 to
12 Hz), often mixed with a β rhythm (around 20 Hz,
range 13 to 30 Hz) and a γ component (around 40 Hz)
recorded over somatosensory cortices, most preferably
over C3 and C4. The SMR is related to the motor cortex
with contributions of somatosensory areas such as that
the β component arises from the motor and μ component
from the sensory cortex. SMR is blocked by movements,
movement imagery, and movement preparation; thus, it
is seen as ‘idling’ rhythm of the cortical sensory region.
In this study, the μ and β rhythms in movement imagery
and/or movement are used as the EEG features to control
a robot arm. To extract such μ and β rhythms and further
to control a robot arm with the extracted EEG features,

STFFT is employed so that both of the spectra of the μ

and β rhythms and the time information are obtained.
Here, we briefly describe the concept of STFFT. A com-

plex Fourier series of function x(t) is defined as

x(t) =
∞∑

k=−∞
Cke jkω0t (1)

By inner product over the interval [−T/2,T/2], the
Fourier coefficients Ck are defined by the formula

Ck =
〈
x(t), e jkω0t

〉
= 1

T

∫ T/2

−T/2
x(t) · e−jkω0tdt (2)

Further, the discrete Fourier transform about the dis-
crete signal xi with sampling interval Ts is expressed as

X(ω) =
∞∑

i=−∞
xie jωiTs , ω = − π

Ts
to

π

Ts
(3)

To the amplified and sampled sequence of N EEG sig-
nals xn (n = 0, 1, · · · ,N − 1), its discrete FFT (DFFT) is
given as

Xk =
N−1∑
n=0

xnWkn (4)

whereW = e−j 2πN , Xk is the obtained spectrum of xn, and
k is the number of frequencies.
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As aforementioned, STFFT is used in this study. The
data xn to be transformed is divided intoN blocks (saying,
N windows, corresponding to time shift t) with an overlap
to reduce artifacts at the boundary. Each block is discrete
Fourier transformed, then the complex result is added to
a matrix, which records magnitude and phase for each
point in time and frequency. This process is repeated so
that both the spectra and time information of the EEG sig-
nals are obtained. For example, let t = 0, 10, 20, · · · , [ms],
then

Xk = {
X(k,10),X(k,20), · · · ,X(k,t)

}
(5)

Shortening the window width will increase the time res-
olution, but it will increase the computation cost. The
concept of the STFFT is shown in Figure 2 and one exam-
ple of obtained spectra of μ rhythm by the STFFT is
shown in Figure 3.

Task design for motion imagery andmotion
In order to extract the features of the μ and β rhythms
in motion imagery and/or motion, four different tasks are
designed, in which the subject is asked to image to flex
his nondominant arm (for example, left arm) but without
real movement (only motion imagery) or to perform a real
actually motion of flexing his elbow joint for holding up a
dumbbell. The four tasks are so designed to generate the
different EEG signals from relaxed idling task to excited
motion task. When the subject is performing each task of
motion imagery or actual motion, he is sitting in a chair
wearing the head cap for EEG measurement. The chair
height is adjusted to fit the subject’s height and let him feel
comfortable.
The detail of designed each task is explained as follows.

Task 1: idling task
In this task, the subject just closes his eyes in relaxation
state, and he is not doing and not thinking anything as
shown in Figure 4 task 1.
This task is designed to get the subject’s EEG in idling

(relaxed) state. It is expected to get the highest μ rhythm
in all of four tasks. The results of STFFT for this task
are shown in Figure 5, in which we find that μ rhythm is
greatly appeared.

Task 2: gazing task
The subject is opening his eyes and continuously gazing
at a marker at the endpoint of the robot arm as shown in
Figure 4 task 2.
In this task, the subject just concentrates himself to gaze

at the marker and is not doing and not thinking anything
else. This task is designed to get the subject’s EEG when
he opens his eyes and gazes at an object. The brain exci-
tation degree of the subject in this task is higher than
that in task 1. It is expected that his μ rhythms would be
decreased or saying, suppressed, and the β rhythms would
have changes accompanying the changes of μ rhythms in
this task. Figure 6 shows the results of STFFT for this task
2. We find that μ rhythms are suppressed and there are a
lot of noises as indicated by ‘A’ in other frequency bands
that is probably caused by eye-blinking artifacts.

Task 3: motion imagery task
In this task, the subject is asked to continuously image to
flex his left arm but not really perform an actual motion
while he is gazing at the marker at the endpoint of the
robot arm as shown in Figure 4 task 3.
This task is designed to get the subject’s EEG in motion

imagery. It is expected that his μ rhythm would be further
decreased in this task. Same as the purpose of task 2, the
second purpose of this task is to see what happens to the
subject’s β rhythm in motion imagery.
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Figure 2 Concept of discrete short-time FFT for EEG signals.
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Figure 3 Spectra of μ rhythm obtained by short-time FFT.

Figure 7 shows the results of task 3 with STFFT.We find
that μ rhythms are suppressed but β rhythms are gener-
ated. This motion imagery task confirmed such a fact that
motion imagery can really result in the changes of μ and
β rhythms.

Task 4: motion task
In this task, the subject is actually holding a 4 kg dumbbell
in 90° angle of his left elbow joint while he is still gazing at
the marker at the endpoint of the robot arm as shown in
Figure 4 task 4. Of course, to conduct the holding task of
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weight
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task3 task4
Figure 4 Four tasks designed to obtain theμ and β rhythms in motion imagery and/or motion.
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Figure 5 Results of short-time FFT for task 1. μ rhythm is greatly generated but almost no β rhythm.

a dumbbell, the subject will first have an intent, or saying,
image, to flex his left arm. This task is in fact a combina-
tion of motion imagery and real motion. In this paper, we
simply define it as motion task.
This task is designed to get the subject’s EEG in motion

task. It is expected that his μ rhythm would be suppressed
tominimum and his β rhythmwould be further increased.
The results of this task with STFFT are shown in Figure 8.
We find that μ rhythm is really suppressed and β rhythm
is greatly generated as we expected.

Spectrum characteristics of each task and some remarks
As described above, tasks 1 to 4 are designed according to
the degree of brain excitation with/without the existence
of motion. It is expected that the spectrum of μ rhythm
will decline and the spectrum of β rhythm will change,
probably will increase, task by task .
Since the spectrum of β rhythm is much less than that

of μ rhythm, the spectrum of EEG is normalized with the

ratio Xr = X(t)/X(max,t), where X(t) and X(max,t) are the
spectrum and the maximum spectrum in the frequency
band 1 to 30 Hz during the time interval t, respectively.
The EEG between C4 and A2 in each task is measured in

24 trials. The measurement time is 30 s, and the window
width of STFFT (i.e. the analytical period) is 100 ms. The
averages of the spectrum ratios (here, we sometimes still
call it as power spectrum) in 24 trials for 30 s are shown
in Figure 9. From this figure, we can find that μ rhythm
greatly occurs in task 1 and it is really suppressed in other
three tasks as we expected. On the other hand, the sup-
pression extent of μ rhythms in other three tasks is not
so gradually intensified as the degree of brain excitation is
increased task by task. The differences among the spectra
of the other three tasks indeed exist, but they are not obvi-
ous. This is different from our expectation, in which we
expected that the suppression ofμ rhythm would be grad-
ually intensified as the increases of the brain excitation
degree.
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Figure 6 Results of short-time FFT for task 2. μ rhythm is suppressed and there are many mixed noises as indicated by ‘A’ probably caused by
eye-blinking artifacts.
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Figure 7 Results of short-time FFT for task 3. μ rhythm is suppressed; meanwhile, β rhythm is generated in motor imagery.

Meanwhile, we can also find that the β rhythm basically
increases from tasks 1 to 4. This shows the fact that the
spectrum in β band increases according to the excitation
degree of the brain. In this study, these two features of μ

and β rhythms are used to control the robot.

Experiments
The subjects are two youngmen. Before experiments, they
gave the consent for the study, which was reviewed and
approved by the Ethics Committee of our university. In
order to get the EEG signals in motion imagery and/or
motion, each subject who is wearing a head cap with
embedded electrodes is asked to perform the defined four
tasks, and his μ rhythm and β rhythm extracted from the
EEG are used to control a robot arm.

Control approach
The flowchart of controlling a robot arm using EEG sig-
nals is shown in Figure 10. The EEG signals from the
electrodes are amplified by an amplifier and input to a per-
sonal computer for A/D conversion via an interface board.

Then, STFFT is implemented to the converted data series
to obtain their spectra X(k,t) (k means frequency band and
t indicates time). Further, μ rhythm (X(μ,t)) and β rhythm
X(β ,t) are extracted from the computed X(k,t). The target
joint angle θd of the robot arm is calculated according to
the obtained spectra of μ rhythm(X(μ,t)) and β rhythm
X(β ,t) with the following formula,

θd = Kμ

(
1 − X(μ,t)

X(max,t)

)
+ Kβ

X(β ,t)
X(max,t)

(6)

where X(max,t) is the maximum spectrum in the frequency
band 1 to 30 Hz during the time duration t, and Kμ and Kβ

are the weight coefficients for μ and β rhythms, respec-
tively. Since the spectrum magnitudes of μ rhythm and
β rhythm are different and the spectrum magnitude of β

rhythm is much less than that of μ rhythm, the two dif-
ferent weight coefficients respectively for μ rhythm and
β rhythm are necessary. Further, in the measured EEG
signals, there are a lot of noises such as artifacts. These
contaminated EEG signals in μ and β bands may lead to
a sharp change of the target angle θd . This would result in
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Figure 8 Results of short-time FFT for task 4. μ rhythm is suppressed and β rhythm is greatly produced in motion and motion imagery.
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Figure 9 Averages of normalized power spectrum of each task in 24 measurement times for 30 s.

an abrupt movement of the robot arm. To prevent this, a
5-Hz low-pass filter is employed to smooth the output of
the target angle θd . Moreover, a threshold is set to the fil-
tered target angle θd to avoid frequently trivial motions of
the robot arm. Finally, this target angle θd is used as the
command for position control of the robot arm.

Experimental procedures
The experimental procedures are basically same as the
steps for four tasks described in Section ‘Task design

for motion imagery and motion’, in which the sub-
jects are asked to perform each task for 38 s. The
EEG is measured between C4to A2 and the refer-
ence point is Cz. The ground of the measurement sys-
tem is right wrist. This ground is separated from the
ground of the motor driving system to prevent the sub-
ject from the possible electrical shock. The angle of
the robot arm is controlled to investigate the perfor-
mance of each task. The experiment system is shown in
Figure 11.

Figure 10 Control flowchart.
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Results and discussion
Experimental results
The experimental results of subjects A and B are shown in
Figures 12 and 13, respectively. In the two figures, the hor-
izontal axes indicate time and the vertical axes represent
the controlled angle of the robot arm. The experimental
time from the start is 38 s for all of four tasks.

Remarks on experimental results
Figures 12 and 13 show the experimental results of con-
trolling the robot arm using extracted EEG features from
the designed four tasks. We find:

• In task 2 and task 3 of subject A (Figure 12), from
start to about 12 s, the angle of the robot arm in task

3 is larger than that in task 2. However, after that, this
difference has disappeared. Further, after 21 s, the
situation is reversed, that is, the angle of the robot
arm in task 3 decreases to be less than the angle in
task 2. For subject B (Figure 13), from start to about
9 s, the angles of the controlled robot arm in task 2
are almost the same as the angles in task 3. But from
9 to 23 s, the angle of the robot arm in task 3 is larger
than that in task 2. However, after 17 s, the angle in
task 3 decreases and then has a slight rise.

• The reason for such changes could be interpreted as
follows. Task 3 is mainly related to the motion
imagery and such kind of action of the subjects to
perform motion imagery is greatly dependent on his
concentration. It could be postulated that after 12 s
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Figure 12 Experimental results of subject A.
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Figure 13 Experimental results of subject B.

(subject A) or 17 s (subject B), the concentration of
the subjects starts to decline and after 21 s, the subject
A’s concentration further recedes. Though we could
not observe the similar phenomenon for subject B, it
could be considered as an individual difference.

• The experimental results tell us two facts. One is that
the subject training for motion imagery is necessary
to keep his/her concentration. On the other hand,
long-time motion imagery may not be a good way for
robot control or external device control since the
subject could not keep his concentration over dozen
seconds.

• For both subjects A and B, different from the results
of tasks 2 and 3, during the entire experiment
duration, the angles of the robot arm in the task 1 are
almost always the minimum in all of four tasks.
Contrarily, the angles corresponding to task 4 are
basically always the maximum in all of four tasks. In
other words, compared with the results in tasks 2 and
3, the angles of the robot arm in tasks 1 and 4 are
more stable. This phenomenon is meaningful.

• The result of the task 1 is natural because the brain
excitation of the subject is the lowest in all of the four
tasks. Though it is comparatively stable, this task has
no practical application value since the subjects in
this task have not done and thought anything.

• However, in task 4, the subjects are holding a 4 kg
dumbbell in 90◦ angle of his left elbow joint while
gazing at the marker at the endpoint of the robot
arm. Since their brain excitation is the highest, the
angles of the robot arm are basically always the
maximum in all of four tasks. This result tells us such
a fact that the EEG signals of the subjects are
comparatively stable when the subjects are holding or
touching something. Furthermore, this fact implies

that EEG signal can be used for robotic power assist
to help a subject holding or moving a heavy load.

Conclusions
In this study, aimed to construct a robot control sys-
tem using EEG signals, four different tasks with different
human’s brain excitation degree are designed, and their
spectra ofμ and β rhythms of EEG signals in the four tasks
are extracted with STFFT. These spectra are used to con-
trol a one-joint robot arm. The experimental results show
that the classic motion imagery cannot be simply used to
real robot control since the subject’s concentration cannot
be kept over dozen seconds. Contrarily, since the EEG sig-
nals in the task of holding a load are comparatively stable,
we conclude that this holding task has a great application
potential to be used to construct a robotic power assist
system to help person to hold or move a heavy load. This
is one of our future work.
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