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Abstract

This paper presents an IF;F, color space for describing colors in microscopic images. Unlike the classical color spaces
that treat the R, G, and B (RGB) components of a pixel's color as independent elements, the proposed color space
treats RGB as a sampled spectral signal, called a RGB signal. Then, based on the Fourier spectrum analysis of the RGB
signal, the 1-D discrete Fourier transform is introduced to describe the color features of microscopic images. K-means
clustering experiments on two microscopic image datasets validate the superiority of the proposed IF;F, color space
compared with the classical RGB and HSV (hue, saturation, and value) color spaces.
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Background

Color image processing is one of the hot topics in image
processing and computer vision. To effectively represent
colors, various color spaces have been presented in the
literature, such as the RGB (R, G, and B) color space,
the HSV (hue, saturation, and value) color space, the
CIELAB color space, and the YCbCr color space. A de-
tailed survey of these color spaces can be found in [1].
In recent years, a number of new methods have also
been proposed for describing colors more effectively.
Chengjun Liu and Jian Yang [2] introduced the inde-
pendent component analysis (ICA) into the analysis of
color features and proposed an ICA-based color space.
Margarita Bratkova et al. developed an oRGB color
space [3] based on the opponent color theory. Ingmar
Lissner and Philipp Urban derived a perception-based
color space [4] that has high perceptual uniformity. For
color image processing algorithms, it is of vital import-
ance to select the optimal color space [1,2,5-7]. However,
most existing color spaces, such as the RGB color space
and the HSV color space, are application dependent. Once
the image varies, the used color space may decrease its
performance. In microscopic image processing, such as
the cervical cell image segmentation, most algorithms
are still based on classical color spaces, which cannot
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best describe the color features of microscopic images
[8,9,7,10-13]. In the existing studies of how to effect-
ively represent colors, we found that few methods
analyze colors from the frequency domain. Therefore,
we investigate colors in microscopic images based on
the frequency analysis of the R, G, and B components
of pixels’ colors in this paper.

Color images are generally stored in the format of the
RGB color space. Through linear or nonlinear trans-
forms, the RGB color space can be transformed to
other classical color spaces. However, these classical
color spaces mostly treat the R, G, and B components
as three independent elements. In this paper, on con-
trary to classical color spaces, we treat the R, G, and B
components as a sequence of a spectral signal, called a
RGB signal. Then, based on the methodology of fre-
quency spectrum analysis in the signal processing area,
we combine the characteristics of 1-D discrete Fourier
transform [14] with the color features of microscopic
images and propose a RGB Fourier transform-based
color space, namely an IF;F, color space, to describe
colors of microscopic images. In this color space, simi-
lar colors have uniform data distributions whereas dif-
ferent colors have obviously different data distributions.

Methods

Color can be represented by a combination of tristimuli R
(red), G (green), and B (blue) [1]. Actually, the R, G, and B
components are obtained from three separate color filters,
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namely red filter Sy, green filter Sg, and blue filter Sg, ac-
cording to the equations below:

R= / P(V)Sg(A)dA
G= / P(V)Sg(1)dA (1)
B= / P()Sp(1)dA

where P(1) is the light radiance with the wavelength A.

From Equation 1, we may find that the R, G, and B
components are not independent but actually correlated
with each other. Unlike many existing classical color
spaces that treat the R, G, and B as independent elements,
we treat them as a sequence of a sampled spectral signal
that has three samples with the value of R, G, and B in
order. In the area of signal processing, we know that simi-
lar signals have a similar Fourier frequency spectrum [14].
Consequently, if we treat the R, G, and B as signal sam-
ples, similar colors in the image may have a similar signal
frequency spectrum, whereas different colors have a differ-
ent signal frequency spectrum. Then, the next question is
how to describe the color features (the intensity and the
chromatic information) based on the Fourier frequency
spectrum? We know that in the RGB color space, the gray
level (without chromatic information) from black to white
is represented by R=G=B={0~ 255} [1]. To some ex-
tent, the chromatic information is caused by the difference
between R, G, and B. When the R, G, and B components
are arranged into a sequence and become a signal, the
high frequency component of the signal’s Fourier trans-
form can describe the difference between R, G, and B. In-
spired by this idea, we introduce the 1-D discrete Fourier
transform into the color feature analysis of microscopic
images as follows.

Assume that a pixel's RGB value is (1, g, b), then (r,
g b) is arranged into a sequence s, where s(0) =7, s(1) =
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g s(2) =b. We assume s to be a sampled signal, which
has three samples with the value r, g, and b, respectively.
We name this signal a RGB signal. According to the def-
inition of 1-D discrete Fourier transform (DFT) [14], the
DFT of s is:

X(k) = DFT{s} = 3" s(n)- exp (-j%’%k) L k=0,1,2
(2)

where X is called the RGB Fourier transform of the
pixel’s color.

Then, the proposed color space is constituted of three
components:

I = p-abs(X(0))
Fy = real(X(2)) (3)
Fy = imag(X(2))

where X(0) is the low frequency (zero frequency) com-
ponent of X and X(2) is the high frequency component
of X. u is a scaling parameter used to scale I into a
proper numerical range for specific image processing
applications, abs(X(0)) is the complex magnitude of X
(0), real(X(2)) is the real part of X(2), and imag(X(2)) is
the imaginary part of X(2). Since the RGB signal only
has three samples, we use 3-point DFT to calculate its
discrete Fourier spectrum. For a 3-point DFT, X(1) and
X(2) both belong to the high frequency components.
The magnitudes of X(1) and X(2) are equivalent, while
their phases are different. Therefore, we can either choose
X(1) or X(2) as the chromatic component of the proposed
color space. If two colors are slightly different, the major
difference between them may be caused by how the RGB
values of each color vary. In the methodology of frequency
spectrum analysis, the high frequency component of a sig-
nal’s Fourier spectrum represents the differences between
the signal’s samples, and these differences, to some extent,
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resolution corresponding to the left and right circles in (a), respectively.

Figure 2 Color vector field of a cervical cell image. (a) Original color cell image. (b) Color vector field of (a). (¢, d) Color vector fields in high

describe how the signal’s samples vary. Therefore, we use
the high frequency component of the RGB signal to de-
scribe the color features of microscopic images in this
paper.

Then, we construct a vector F = [F,F5], and then I and
F are the intensity component and the chromatic com-
ponent of the proposed color space, respectively. This
new color space is called an IF;F, color space. We use a
color cervical cell image as an example to analyze the
characteristics of different colors in the IF,F, color
space. In Figure 1, the second column shows the RGB
signals. Each RGB signal corresponds to a sampled
pixel’s color (as the arrow shows in Figure 1) in the cell
image. The data distribution map in the middle part of
Figure 1 shows the data distribution of vector F corre-
sponding to each RGB signal in the second column. We
can find that, for similar colors, the data distribution of
vector F is concentrated, whereas for different colors,
the data distribution of vector F is dispersed. In addition,

Table 1 The ZSI mean pzs, and the deviation oz, of the
clustering results in different color spaces

Hzsi £ 0z

RGB HSV IF,F;
Dataset 1 0.8090 + 0.0880 0.8237 +0.0838 0.8801 +0.0543
Dataset 2 0.8121 £ 0.0856 0.8103 +0.0809 0.8910+ 0.0508

we also provide the data distribution map of the chro-
matic components (the H and S components) in the
HSYV color space concerning the same pixels in the left
cell image, as shown in the right part of Figure 1. To
make fair comparisons, we rescaled the H and S values
to the same range as that of the values in vector F. We
can see that the data distributions of H and S are not as
concentrated as that of vector F for the red points in
Figure 1.

In addition, we provide the color vector field of a cer-
vical cell image to further demonstrate the effectiveness
of the IF,F, color space, as shown in Figure 2. In the
color vector field of the image, each point corresponds
to one image pixel and the vector on that point corre-
sponds to the color vector F of that pixel. From Figure 2,
we may observe that the vectors within the cell region
are similar, whereas the vectors in the cell region are ob-
viously different from those in the background region.

Results and discussion

Our experiments focused on validating the superiority of
the proposed IF F, color space over the classical RGB
and HSV color spaces for describing the color features
of microscopic images. Because K-means algorithm is a
widely used clustering algorithm, which can merge data
points with high similarity into the same class and split
data points with low similarity into different classes, we
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Figure 3 The statistical ZSI results. (a) Dataset 1. (b) Dataset 2.
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adopted K-means clustering algorithm to make rough
segmentation of the cell images and test the discriminat-
ing power of different color spaces.

Two optical microscopic image datasets including the
Herlev dataset [15] containing 100 normal cervical cell
images (Dataset 1) and the single-cell cervical smear
image dataset of our lab containing 100 images (Dataset
2) have been tested. The cell images of our lab were ac-
quired by an automatic microscopic image acquisition sys-
tem with a CCD camera (DA-HENG, Beijing, China), an
optical microscope (Olympus CX31, Olympus Corpor-
ation, Shinjuku-ku, Japan), and a 40x magnification lens.

In each cell image, there are typically two kinds of
pixels: the pixels in the cell region (with approximately
red or blue color) and the pixels in the background (with
approximately white color). The aim of the rough segmen-
tation is to split the pixels into two classes: the cell (fore-
ground) and the background. The colors of the pixels
within the same region (the cell or the background) are
similar, whereas the major difference between the cell and
the background pixels is caused by the chromatic compo-
nents of pixels’ colors. Therefore, we chose the chromatic
components of the HSV and IF;F, color spaces as the in-
put feature vector to the K-means algorithm. For the RGB
color space, because there are no chromatic components
of the RGB space, we chose all the R, G, and B compo-
nents. Since the color difference between the nuclei and
the cytoplasm is mainly caused by the intensity contrast,
whereas their chromatic components are similar, they are
supposed to be within the same class.

We employed the same metric, ZSI (Zijdenbos similar-
ity index) [16], as used in [8] to test the accuracy of the
rough segmentation results in different color spaces.
The ZSI is defined as

#{A1nAy}

781 = 2#—{A1} AT

(4)

where A; is the set of ground truth foreground pixels,
A, is the set of segmented foreground pixels, and #{} is
the number of pixels in the set. This index is similar to
the Dice [17] similarity coefficient in the literature. The
ground truth cell regions are manually segmented by an
expert cytopathologist. The ZSI results of the IF;F, color
space and the other two color spaces are provided in
Table 1 and Figure 3.

Figure 4 shows several rough segmentation results.
The first three cell images are from Dataset 1, and the
other images are from Dataset 2. We can find that the
foreground regions (black) of the clustering results in
the IF;F, color space are more approximated to the real
cell regions than the RGB and HSV color spaces. Many
pixels are classified into the wrong class in the RGB and
HSYV color spaces. In Table 1, we can find that the ZSI
for our method has a mean larger than 0.89 and stand-
ard deviation smaller than 0.06, which indicates that the
accuracy of the rough segmentation results in the IF;F,
color space is higher than that in the other two color
spaces. This demonstrates that the discriminating power
of the IF;F, color space is higher than that of the other
two classical color spaces. Because the high frequency
component of the RGB signal’s Fourier spectrum is, to
some extent, the reflection of the difference between the
R, G, and B, it may be more suitable for describing
colors of the microscopic images than classical color
spaces. From Table 1 and Figure 4, it can be found that
the performance of the proposed IF;F, color space is
better than that of the other two color spaces.
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the proposed color space.

Figure 4 K-means clustering results. (a) Original microscopic images. (b) Results of the RGB space. (c) Results of the HSV space. (d) Results of

Conclusions

In conclusion, we proposed a novel color space for de-
scribing colors of the microscopic images in this
paper. On contrary to classical color spaces, we treat
the R, G, and B components as a sampled spectral
signal. Based on the Fourier spectrum analysis of the
signal, we propose a RGB Fourier transform-based

color space, namely IF;F, color space. K-means clus-
tering results of two microscopic image datasets show
that the performance of the proposed IF;F, color
space is better than that of the classical RGB and HSV
color spaces. The proposed IF;F, color space may be
also useful for other kinds of color images and the
relative automatic medical systems.
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In this paper, we treat the R, G, and B components of
a pixel’s color as a sampled signal. Since this signal only
has three samples, we use 3-point DFT to calculate its
discrete Fourier transform. For a 3-point DFT, the Fou-
rier transform is just expended to the second order.
However, we think that higher orders of the Fourier
transform may be useful for specific applications, and
we will investigate this topic in our future work.
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