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Abstract

Decision making and planning for which the state information is only partially available is a problem faced by all forms
of intelligent entities they being either virtual, synthetic or biological. The standard approach to mathematically solve
such a decisional problem is to formulate it as a partially observable decision process (POMDP) and apply the same
optimisation techniques used in the Markov decision process (MDP). However, applying naively the same
methodology to solve MDPs as with POMDPs makes the problem computationally intractable. To address this
problem, we take a programming by demonstration approach to provide a solution to the POMDP in continuous
state and action space. In this work, we model the decision making process followed by humans when searching
blindly for an object on a table. We show that by representing the belief of the human’s position in the environment
by a particle filter (PF) and learning a mapping from this belief to their end effector velocities with a Gaussian mixture
model (GMM), we can model the human’s search process and reproduce it for any agent. We further categorize the
type of behaviours demonstrated by humans as being either risk-prone or risk-averse and find that more than 70% of
the human searches were considered to be risk-averse. We contrast the performance of this human-inspired search
model with respect to greedy and coastal navigation search methods. Our evaluation metric is the distance taken to
reach the goal and how each method minimises the uncertainty. We further analyse the control policy of the coastal
navigation and GMM search models and argue that taking into account uncertainty is more efficient with respect to
distance travelled to reach the goal.
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Background
Acting under partial observability
Learning controllers or policies to act within a context
where the state space is partially observable is of high rel-
evance to all real robotic applications. Resulting from lim-
ited and inaccurate perceptual information, often only an
approximation of the environment is available at any given
time. If this inherent uncertainty is not taken into account
during planning or control, there is a non-negligible risk of
missing goals, getting lost and wasting valuable resources.
A common approach is to formulate the uncertainty

present in both action and state as a partially observ-
able Markov decision process (POMDP). POMDPs are
an extensive area of research in the operational research,
planning and decision theory community [1,2]. The
emphasis is to be able to act optimally with respect to an
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objective criteria when the state information is only par-
tially available due to perceptual limitations and actions
that are non-deterministic (stochastic).
The first approach to solving a POMDP is to apply value

iteration (VI) [3] over the belief space (space of all possible
probability distributions over the state space) as if we were
solving for a standard Markov decision process (MDP).
If the states, actions and observations are all discrete and
the cost (or reward) function which encodes the task is
the expected reward, then the overall value function is a
convex combination of linear functions. In this setting,
an exact solution exists [4], p. 513; however, the time and
space complexity of VI in this context grows exponentially.
A popular approach to find a tractable solution to a

POMDP is to reduce the size of the belief space by approx-
imating it as a set of discrete reachable beliefs and then
performVI in this reduced space. Suchmethods fall under
the category of point-based value iteration (PBVI) [5].
Most research has focused on determining the best set of
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belief points [6-8] to be evaluated in VI. These methods
rely on exploratory/search heuristics to discover a suffi-
cient set of probability densities or sample points to be
able to construct a sufficiently accurate approximation of
the belief space such that an optimal policy can be found
(see [9] for a detailed review on PBVI algorithms).
Other approaches are based on compressing the belief

to sufficient statistics (mean and entropy) as in [10] and
thereafter to perform VI in this augmented state space.
The drawback with these methods so far is that they
cannot deal with both continuous state and action space
(we do not consider macro/parametrised actions to be
a true solution for the continuous domain). The notice-
able exception is Monte Carlo POMDP [11] which rep-
resents the belief of the position of a robot by a particle
filter. However, the value function is difficult to com-
pute and requires storing belief instantiations for eval-
uating new unseen beliefs. The major drawback of all
these approaches lies with the exploration problem which
becomes infeasible as the number of states and actions
increase.
Decision theoretic-based approaches have also been

applied. Notable examples are [12,13] where a decision
tree graph is constructed with nodes representing beliefs
(different realizations of a probability density function
over the state space) and edges being actions (discrete).
The actions themselves are typically macro-actions com-
prised of predefined start and end conditions. A planner
(A* search) is used to find the appropriate set of actions to
take, which follows a heuristic to find a trade-off between
reducing the uncertainty and achieving the goal. If a large
discrepancy exists between the estimated state and actual
state, a new policy has to be re-planned. The shortcomings
of these methods lie with the computational cost of con-
structing the search tree with particle filters (PF) for the
belief nodes and the design of macro-actions. The respon-
siveness of these systems are bound to the computational
cost and frequency of the re-planning step.

Programming by demonstration and uncertainty
Programming by demonstration (PbD) is advantageous in
this context since it removes the need to perform the time-
consuming exploration of the state-action tree to discover
an optimal policy and does not rely on any exploration
heuristics to gather a sufficient set of belief points (as in
point-based value iteration methods). We expect humans
to perform an informed search. In contrast to stochastic
samplingmethods, humans utilise past experience to eval-
uate the costs of their actions in the future and to guide
their search. This foresight and experience are implicitly
encoded in the parameters of the model we learn from the
demonstrated searches.
PbD has a long history in the autonomous naviga-

tion community. In [14], behaviour primitives of the

PHOENIX robot control architecture are incrementally
learned from demonstrations. Two types of behaviour
namely reactive and history-dependent are learned and
are encoded by radial basis functions. The uncertainty
is implicitly handled by directly learning the mapping
between stimulus and response. In [15], the parame-
ters of a controller which performs obstacle avoidance
are learned from human demonstrations. The uncer-
tainty is inherently handled by learning directly the
relation between sensor input and control output. In
[16], the objective function of a path planner is learned
from human demonstrations. The objective function is
a weighted sum of features corresponding to raw sensor
measurements. This is another example where the par-
tial information of the state is taken into account at the
perception-action level, with the difference that instead of
a policy being learned the objective function from which
it is generated is learned. In [17], the authors learn how
to combine low-level pre-acquired action primitives to
achieve more complex tasks from human demonstrations,
but they do not consider the effect of uncertainty.
Much work has been undertaken in learning reac-

tive behaviour, history-dependent behaviour and com-
bining multiple behaviour primitives to achieve complex
behaviour. However, very few have studied the effect of
uncertainty in the decision process and do not consider it
during the learning or assume that it is implicitly handled.
A noticeable exception is [18], in which a human expert
guides the exploration of a robot in an indoor environ-
ment. The high-level actions (explore, loop closure, reach
goal) taken by the human are recorded along with three
different features related to the uncertainty in the map.
Using SVM classification, a model is learned which indi-
cates which type of action to take given a particular set
of features. The difference with our approach is that we
perform the learning in continuous action space at trajec-
tory level and multiple actions are possible given the same
state, which cannot be handled by a classifier.

Human beliefs
A crucial aspect of our work is to be able to infer
the human’s location belief whilst he is searching. The
work on modelling human beliefs and intentions [19,20]
has been undertaken in cognitive science. Human mind
attributes, such as beliefs, desires and intentions, are
not directly observable. They have to be inferred from
actions. In [21], the authors present a Bayesian framework
for modelling the way humans reason about and predict
actions of an intentional agent. The comparison between
the model and humans’ predictions yielded similar infer-
ence capabilities when asked to infer the intentions of an
agent in a 2D world. This provided evidence supporting
the hypothesis that humans integrate information using
Bayes’ rule. Further, in [19], a similar experiment was
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performed in which the inference capabilities of humans,
with regard to both belief and desire of an agent, were
comparable to those of their Bayesian model. Our work
makes the similar hypothesis that humans integrate infor-
mation in a Bayesian way, however in the continuous
domain. We infer the belief humans have of their location
in the world during a search task.
As in our previous work [22], we learn a generative

model of the human’s search behaviour in the task of
finding an object on a table. We compliment this work
with four additional components, namely (1) an analy-
sis of the different types of exhibited behaviour by the
human demonstrators, a learned GMM model and two
other search algorithms (greedy and coastal navigation),
(2) a comparison between the human learned controller
(GMM) and a coastal navigation search policy in addition
to greedy and hybrid controllers which have already been
discussed in our previous work, (3) an analysis of variance
(ANOVA) to ensure that the search experiments were sta-
tistically different and a report on the distance taken to
reach the goal and (4) a comparison of the policy gener-
ated by the GMM controller and the coastal navigation
algorithm, with an emphasis of the role of the uncertainty.

Methods
Research design andmethodology
In this work, we consider a task in which both a robot
and a human must search for an object on a table whilst
deprived of vision and hearing. The robot and the human
have prior knowledge of the environmental setup making
this a specific search problem with no required map-
ping of the environment, also known as active localisa-
tion. In Figure 1, a human has his sense of vision and

hearing impeded, making the perception of the environ-
ment partially observable and only leaving the sense of
touch available for solving the task. Before each demon-
stration, the human volunteer is disoriented. His transi-
tional position is varied with respect to the table although
his heading remains the same (facing the table) leaving
no uncertainty on his orientation. The disorientation of
the human subject is to ensure that his believed location
is uniform. At the first time step, the human’s state of
mind can be considered observable. All proceeding beliefs
can then be recursively estimated from the initial belief.
The hearing sense is also impeded since it can facilitate
localisation when no visual information is available, and
the robot has no equivalent giving an unfair advantage to
the human. By impeding hearing, we align the perception
correspondence between the human and robot.
It is non-trivial to have a robot learn the behaviour

exhibited by humans performing this task. As we cannot
encapsulate the true complexity of human thinking, we
take a simplistic approach and model the human’s state
through two variables, namely the human’s uncertainty
about his current location and the human’s belief of his
position. The various strategies adopted by humans are
modelled by building a mapping from the state variables
to actions, which are the motion of the human arm. Aside
from the problem of correctly approximating the belief
and its evolution over time, the model needs to take into
consideration that people behave very differently given the
same situation. As a result, it is not just a single strategy
that will be transferred but rather a mixture of strategies.
While this will provide the robot with a rich portfolio of
search strategies, appropriate methods must be developed
to encode, at times, these contradictory strategies. This

Figure 1 Experimental setup. Left: A human demonstrator searching for the green wooden block on the table given that both his hearing
and vision senses have been impeded. He starts (hand) at the white spot near position (1). The red and blue trajectories are examples of possible
searches.Middle: Inferred belief the human might have with respect to his position. If the human always starts at (1) and his belief is known, all
following beliefs (2) can be inferred from Bayes’ rule. Right: WAM Robot 7 DOF reproduces the search strategies demonstrated by humans to find
the object.
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leads to the main scientific question we seek to address in
this work:

• Do humans exhibit particular search strategies, and if
so, is it feasible to learn them?

• How well does a statistical controller learned from
human demonstrations perform with respect to
approaches which do not take into account the
uncertainty directly?

Experimental setup
In the experimental setup, a group of 15 human volun-
teers were asked to search for a wooden green block
located at a fixed position on a bare table (see Figure 2,
top left). Each participant repeated the experiment ten
times from each of four mean starting points with an asso-
ciated small variance. The starting positions were given
with respect to the location of the human’s hand (all

participants were right-handed). The humans were always
facing the table with their right arm stretched out in front
of them. The position of their hand was then either in
front, to the left, to the right or in contact with the table
itself.
As covered in the ‘Background’ section, previous work

has taken a probabilistic Bayesian approach to model the
beliefs and intent of humans. A key finding was that
humans update their beliefs using Bayes’ rule (shown so
far in the discrete case). We make a similar assumption
and represent the human’s location belief (where he thinks
he is) by a particle filter which is a point mass representa-
tion of a probability density function. There is no way of
knowing the human’s belief. We make the critical assump-
tion that the belief is observable in the first time step of
the search, and all following beliefs are assumed correct
through applying Bayes integration. The belief is always
initialized to be uniformly distributed on top of the table

Figure 2 Experimental setup. Top left: A participant is trying to locate the green wooden block on the table given that both vision and hearing
senses have been inhibited; the location of his hand is being tracked by the OptiTrack® system (NaturalPoint, Inc., Corvallis, OR, USA). Top right:
Initial distribution of the uncertainty or belief we assume the human has with respect to his position. Bottom right: Set of recorded searches. The
trajectories are with respect to the hand. Bottom right: Trajectories starting from the same area but have different search patterns. The red
trajectories all navigate to the goal via the top right corner as opposed to the blue which go by the bottom left and right corners. Among these
two groups, there are trajectories which seem to minimize the distance taken to reach the goal as opposed to some which seek to stay close to
the edge and corners.
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(see Figure 2, top right), and the starting position of the
human’s hand is always in this area.
Before each trial, the participant was told that he/she

would always be facing the same direction with respect
to the table (so always facing the goal, like in the case of
a door), but his/her transitional starting position would
vary. For instance, the table might not be always directly in
front of the person and his/her distance to the edge or cor-
ner could be varied. In Figure 2 (bottom left), we illustrate
four representative recorded searches, whilst in the bot-
tom right, we illustrate a set trajectories which all started
from the same region. One interesting aspect is the diver-
sity present, demonstrating clearly that humans behave
differently given the same situation.

Formulation
In the standard PbD formulation of this problem, a
parametrised function is learned, mapping from state, xt ,
which denotes the current position of the demonstra-
tor’s hand to ẋt , the hand’s displacement. In our case,
since the environment is partially observable, we have a
belief or probability density function, p(xt|z0:t), which is
conditioned on all sensing information, z (the subscript,
0:t, indicates the time slice which ranges from t = 0
to the current time t = t) over the state space at any given
point in time. We seek to learn this mapping, f : p(xt|z0:t)
�→ ẋ, from demonstrations. During each demonstration,
we record a set of variables consisting of the following:

1. ẋt ∈ R
3, velocity of the hand in Cartesian space,

which is normalised.
2. x̂t = arg maxxt p(xt|z0:t), the most likely position of

the end effector or believed position.
3. U ∈ R, the level of uncertainty which is the entropy

of the belief: H (p(xt|z0:t)).

A statistical controller was learned from a data set of
triples {(x, x̂,U)}, and a desired direction (normalised
velocity) was obtained from conditioning on the belief and
uncertainty.
Having described the experiment, we proceed to give

an in-depth description of the mathematical representa-
tion of the belief, sensing and motion models and the
uncertainty.

Belief model
A human’s belief of his location in an environment can
be multi-modal or uni-modal, Gaussian or non-Gaussian
and may change from one distribution to another. We
chose a particle filter to be able to represent such a
wide range of probability distributions. A particle fil-
ter is a Bayesian probabilistic method which recursively
integrates dynamics and sensing to estimate a posterior
from a prior probability density. The particle filter has

two elements. The first estimates a distribution over the
possible next state given dynamics, and the second cor-
rects it through integrating sensing. Given amotion model
p(xt|xt−1, ẋt) and a sensing model p(zt|xt), we recursively
apply a prediction phase where we incorporate motion to
update the state and an update phase where the sensing
data is used to compute the state’s posterior distribution.
The two steps are depicted below:

p (xt|z0:t−1) =
∫

p (xt|xt−1, ẋt) p (xt−1|z0:t−1) dxt−1 (1)

p (xt|z0:t) = p (zt|xt) p (xt|z0:t−1)

p (zt|z0:t−1)
(2)

The probability distribution over the state p (xt|z0:t) is
represented by a set of weighted particles which repre-
sent hypothetical locations of the end effector and their
density which is proportional to the likelihood. The par-
ticular particle filter used was the regularised sequential
importance sampling [23], p. 182. From the previous lit-
erature [19], it has been shown that there is a similarity
between Bayes update rule and the way humans inte-
grate information over time. Under this assumption, we
hypothesise that if the initial belief of the human is known
then the successive update steps of the particle filter
should correspond to a good approximation of the next
beliefs.

Sensing andmotionmodel
Sensing model. The sensing model tells us the likelihood,
p (zt|xt), of a particular sensation zt given a position
xt ∈ R

3. In a human’s case, the sensation of a curvature
indicates the likelihood of being near an edge or a cor-
ner. However, the likelihood cannot be modelled through
using the human’s sensing information. Direct access to
pressure, temperature and such salient information is not
available. Real sensory information needs to be matched
against virtual sensation at each hypothetical location xt
of a particle. Additionally, for the transfer of behaviour
from human to robot to be successful, the robot should be
able to perceive the same information as the human, given
the same situation. An approximation of what a human
or robot senses can be inferred, based on the end effec-
tor’s distance to particular features in the environment. In
our case, four main features are present, namely corners,
edges, surfaces and an additional dummy feature defin-
ing no contact, air. The choice of these features is prior
knowledge given to our system and not extracted through
statistical analysis of recorded trajectories. The sensing
vector is zt = [

pc, pe, ps, pa
]
, where p refers to proba-

bility and the subscript corresponds to the first letter of
the feature it is associated with. In Equation 3, the sens-
ing function, h (xt , xc), returns the probability of sensing
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a corner, where xc ∈ R
3 is the Cartesian position of the

corner which is the closest to xt .

pc = h (xt , xc;β) = exp
(− (β · ‖xt − xc‖)2

)
(3)

The exponential form of the function, h, allows the
range of the sensor to be reduced. We set β > 0 such
that any feature which is more than 1 cm away from the
end effector or hand has a probability close to zero of
being sensed. The same sensing function is repeated for
all feature types.
The sensing model takes into account the inherent

uncertainty of the sensing function (3) and gives the like-
lihood, p (zt|xt), of a position. Since the range of sensing
is extremely small and entries are probabilistic, we assume
no noise in the sensor measurement. The likelihood of
a hypothetical location, xt , is related to Jensen-Shannon
divergence (JSD), p (zt|xt) = 1−JSD

(
zt||ẑt

)
, between true

sensing vector, zt , obtained by the agent and that of the
hypothetical sensation ẑt generated at the location of a
particle.
Motion model. The motion model is straightforward

compared with the sensing model. In the robot’s case, the
Jacobian gives the next Cartesian position given the cur-
rent joint angles and angular velocity of the robot’s joints.
From this, the motion model is given by p (xt|xt−1, ẋt) =
J(q)q̇ + ε where q is the angular position of the robot’s
joints, J(q) is the Jacobian and ε ∼ N (0, σ 2I) is white
noise. The robot’s motion is very precise and its noise vari-
ance is very low. For humans, the motion model is the
velocity of the hand movement provided by the tracking
system.

Uncertainty
In a probability distribution framework, entropy is used
to represent uncertainty. It is the expectation of a random
variable’s total amount of unpredictability. The higher the
entropy, the more the uncertainty; likewise, the lower the
entropy, the lesser the uncertainty. In our context, a set
of weighted samples {wi, xi}i=1...,N replaces the true prob-
ability density function of the belief, pu (xt|z0:t). A recon-
struction of the underlying probability density is achieved
by fitting a Gaussian mixture model (GMM) (Equation 4)
to the particles,

pu (xt|z0:t ; {π ,μ,�}) =
K∑

k=1
πk · N (xt ;μk ,�k) (4)

where K is the number of Gaussian components, the
scalar πk represents the weight associated to the the mix-
ture component k (indicating the component’s overall
contribution to the distribution) and

∑K
k=1 πk = 1. The

parameters μk and �k are the mean and covariance of the
normal distribution k.

The main difficulty here is determining the number of
parameters of the density function in a computationally
efficient manner. We approach this problem by find-
ing all the modes in the particle set via mean-shift hill
climbing and set these as the means of the Gaussian func-
tions. Their covariances are determined by maximising
the likelihood of the density function via expectation-
maximisation (EM).
Given the estimated density, we can compute the upper

bound of the differential entropy [24],H , which is taken to
be the uncertainty U ,

H (pu (xt‖z0:t ; {π ,μ,�}))

=
K∑

k=1
πk

(
− log (πk) + 1

2
log

(
(2πe)D |�k|

))
(5)

where e is the base of the natural logarithm and D the
dimension (being 3 in our case).
The reason for using the upper bound is that the exact

differential entropy of a mixture of Gaussian functions
has no analytical solution. When computing both the
upper and lower bounds, it was found that the difference
between the two was insignificant, making any bound a
good approximation of the true entropy. The choice of the
believed location of the robot/human end effector is taken
to be the mean of the Gaussian function with the highest
weighted π .

x̂t = arg max
xt

pu (xt|z0:t ; {π ,μ,�}) = μ(k=max(π)) (6)

Figure 3 depicts different configurations of the modes
(clusters) and believed position of the end effector (indi-
cated by a yellow arrow).

Model of human search
During the experiments, the recorded trajectories show
that different actions are present for the same belief and
uncertainty making the data multi-modal (for a particular
position and uncertainty, different velocities are present).
That is, multiple actions are possible given a specific
belief. This results in a one-to-many mapping which is
not a valid function, eliminating any regression technique
which directly learns a non-linear function. To accommo-
date this fact, we again made use of a GMM to model the
human’s demonstrated searches, {(x, ẋ,U)}. Using statisti-
cal models to encode control policies in robotics is quite
common (see [25]).
By normalising the velocity, the amount of information

to be learned was reduced. We also took into considera-
tion that velocity is more specific to embodiment capabil-
ities: the robot might not be able to reproduce safely some
of the velocity profiles demonstrated.
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Figure 3 Representation of the estimated density function. Top left and right: Initial starting point. All Gaussian functions are uniformly
distributed with uniform priors. The red cluster always has the highest likelihood which is taken to be the believed location of the robot’s/human’s
end effector. Bottom left: Contact with the table has been established. The robot location differs from his belief. Bottom right: Contact has been made
with a corner. The clusters reflect that the robot could be at any corner (note that weights are not depicted, only cluster assignment).

The training data set comprised a total of 20,000 triples(
ẋ, x̂,U

)
from the 150 trajectories gathered from the

demonstrators. The fitted GMM ps
(
ẋ, x̂,U

)
had a total of

seven dimensions, three for direction, three for position
and one scalar for uncertainty. The definition of the GMM
is presented in Equation 7:

ps(ẋ, x̂,U ; {π ,μ,�}) =
K∑

k=1
πk ·N (ẋ, x̂,U ;μk ,�k) (7)

μk =
⎡
⎣ μẋ

μx̂
μU

⎤
⎦ �k =

⎡
⎣ �ẋẋ �ẋx̂ �ẋU

�x̂ẋ �x̂x̂ �x̂U
�Uẋ �Ux̂ �UU

⎤
⎦

Given this generative representation of the humans’
demonstrated searches, we proceeded to select the neces-
sary parameters to correctly represent the data. This step

is know as model selection, and we used Bayesian infor-
mation criterion (BIC) to evaluate each set of parameters
which were optimised via EM.
A total of 83 Gaussian functions were used in the final

model, 67 for trajectories on the table and 15 for those in
the air. In Figure 4 (left), we illustrate the model learned
from human demonstrations where we plot the three-
dimensional slice (the position) of the seven-dimensional
GMM to give a sense of the size of the model.

Coastal navigation
Coastal navigation [26] is a path planning method in
which the objective function (Equation 8) is composed of
two terms.

f (x0:T ) =
T∑
t=0

λ1 · c (xt) + λ2 · I (xt) (8)

Figure 4 Resulting search GMM and information gain map. Left: Resulting search GMM. A total of 67 Gaussian mixture components are present.
We note the many overlapping Gaussians: this results from the level of uncertainty over the different choices taken. For example, humans follow
along the edge of the table in different directions and might leave the edge once they are confident with respect to their location. Right:
Information gain map of the table environment. Dark regions indicate high information gain as oppose to lighter ones. Not surprisingly, the highest
are the corners, followed by the edges.
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The first term, c (xt), is the traditional ‘cost to go’ which
penalizes every step taken so as to ensure that the opti-
mal path is the shortest. The value was simply set to 1 for
all discrete states in our case. The second term, I (xt), is
the information gain of a state. The information gain, I,
of a particular state is related to how much the entropy
of a probability density function (pdf), being the location’s
uncertainty in our case, can be reduced. The two λ’s are
scalars which weigh the influence of each term.
In our table environment, we discretised the state space,

R
3, into bins so as to have a resolution of approximately,

1 cm3, giving us a total of a 125,000 states. The action
space was discretised to six actions, two for each dimen-
sion meaning that all motion is parallel to the axis. For
each state, xt , an I (xt) value is computed by evaluating
Equation 9:

I (xt) = Ep(zt |xt)
{
H(pu(xt|z0:t)

} − H (pu (xt|z0:t−1)) ,
(9)

which is essentially the difference between the entropy of
a prior pdf to that of a posterior pdf. We set our initial pdf
to be uniformly distributed, and we computed the maxi-
mum likelihood sensation for each discrete state xt which
is akin to the expected sensation or assuming that there
is no uncertainty in sensor measurement (an assumption
oftenmade throughout the literature to avoid carrying out
the integral of the expectation in Equation 9). The result
is the difference between the posterior pdf, given that the
sensation occurred in xt , and the prior pdf. The resulting
cost map is illustrated in Figure 4. As expected, corners
have the highest information gain followed by edges and
surfaces. We do not show the values of the table since they
provided much less information gain.
The optimization of the objective function is accom-

plished by running Dijkstra’s algorithm. This algorithm,
given a cost map, computes the shortest path to a specific
target from all the states. This results in a policy.

Control
The standard approach to control with a GMM is to con-
dition on the state x̂t and Ut in our case and perform
inference on resulting conditional GMM (Equation 10)
which is a distribution over velocities or directions.

ps
(
ẋ|x̂,U) =

K∑
k=1

πk
ẋ|x̂,U · N

(
ẋ ;μk

ẋ|x̂,U ,�
k
ẋ|x̂,U

)
(10)

The new distribution is of the dimension of the out-
put variable, the velocity (dimension 3). The variable ẋ
in ẋ|x̂,U indicates the predictor variable, and the vari-
ables x̂,U have been conditioned. A common approach
in statistical PbD methods using GMMs is to take the

expectation of the conditional (known as Gaussian mix-
ture regression) (Equation 11):

ẋ = E{ps
(
ẋ|x̂,U)} =

K∑
k=1

πk
ẋ|x̂,U · μk

ẋ|x̂,U (11)

The problem with this expectation approach is that it
averages out opposing directions or strategies and may
leave a net velocity of zero. One possibility would be
to sample from the conditional; however, this can lead
to non-smooth behaviour and flipping back and forth
between modes resulting in no displacement. To main-
tain consistency between the choices and avoid random
switching, we perform a weighted expectation on the
means so that directions (modes) similar to the current
direction of the end effector receive a higher weight than
opposing directions. For every mixture component k, a
weight αk is computed based on the distance between the
current direction and itself. If the current direction agrees
with the mode, then the weight remains unchanged, but if
it is in disagreement, a lower weight is calculated accord-
ing to the equation below:

αk(ẋ) = πk
ẋ|x̂,U · exp

(
− cos−1

(
< ẋ,μk

ẋ|x̂,U >
))

(12)

Gaussian mixture regression is then performed with
the normalised weights α instead of π (the initial weight
obtained when conditioning).

ẋ = Eα

{
ps

(
ẋ|x̂,U)} =

K∑
k=1

αk(ẋ) μk
ẋ|x̂,u (13)

The final output of Equation 13 gives the desired direc-
tion (ẋ is re-normalised). In the case when the mode
suddenly disappears (because of sudden change of the
level of uncertainty caused by the appearance or disap-
pearance of a feature), another present mode is selected
at random. For example, when the robot has reached a
corner, the level of uncertainty for this feature drops to
zero. A new mode, and hence new direction of motion,
will then be computed. However, this is not enough to
be able to safely control the robot. One needs to control
the amplitude of the velocity and ensure compliant con-
trol of the end effector when in contact with the table.
This behaviour is not learned here, as this is specific to
the embodiment of the robot and unrelated to the search
strategy. The amplitude of the velocity is computed by a
proportional controller based on the believed distance to
the goal,

ν = max(min(β1,Kp(xg − x̂),β2) (14)

where the β ’s are lower and upper amplitude limits, xg is
the position of the goal and Kp is the proportional gain
which was tuned through trials.
As mentioned previously, compliance is the other

important aspect when having the robot duplicate the
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search strategies. Collisions with the environment occur
as a result of the uncertainty. To avoid risks of breaking
the table or the robot sensors we have an impedance con-
troller at the lowest level which outputs appropriate joint
torques τ . The overall control loop is depicted in Figure 5.

Results and discussion
We analysed the types of behaviour present in the human
demonstration as well as in four different search algo-
rithms, namely greedy, GMM, hybrid and coastal. A qual-
itative analysis of the GMM search policy (namely the
different modes/decisions present) is contrasted with the
coastal navigation policy. Finally, we evaluated the perfor-
mance of the searches, with respect to the distance taken
to reach the goal and the uncertainty profiles towards the
end of the searches in five different experiments (different
types of initializations).

Search and behaviour analysis
For each method (greedy, GMM, hybrid, coastal), 70
searches were performed with all starting positions drawn
from the uniform distribution depicted in Figure 2 (top
right). Figure 6 gives the expected sensation E{z} and vari-
ance Var{z} for each trajectory with respect to the edge
and corner of the table.

Figure 5 Overview of the decision loop. At the top, a strategy is
chosen given an initial belief p(x0|z0) of the location of the end
effector (initially through sampling the conditional). A speed is applied
to the given direction based on the believed distance to the goal. This
velocity is passed onwards to a low-level impedance controller which
sends out the required torques. The resulting sensation, encoded
through the multinomial distribution over the environment features,
and actual displacement are sent back to update the belief.

The selection of edges and corners as features as a
means of classifying the type of behaviours present is not
solely restricted to our search task. Salient landmarks will
result in a high level of information gain, which is the case
for the edge and corner (see Figure 4, right). Other tasks
can use such features or variants in which the curvature is
considered for representing the task space. These features
are present in most settings, and high-level features can
use these easily as their building blocks.
We note that the greedy search approach seeks to go

directly to the goal without taking into account the uncer-
tainty. The GMM models human search strategies. The
hybrid is a combination of both the greedy and GMM
method where once the uncertainty has been sufficiently
minimised switches (threshold) to the greedy method for
the rest of the search. The coastal navigation algorithm
finds the optimal path to the goal based on an objec-
tive function which consists of a trade-off between the
time taken to reach the goal and the minimisation of the
uncertainty.
It can be seen that the human demonstrations have a

much wider spread than those of the search algorithms.
We suggest that this is due to human behaviours being
optimal with respect to their own criteria as opposed
to the algorithms which usually tend to only max-
imise a single objective function. The trajectories of the
greedy and GMMmethods represented by their expected
features demonstrate two distinctive behaviours (in terms
of expected sensation), risk-prone for the greedy and
risk-averse for the GMM.
We take the assumption that greedy trajectories are

risk-prone by nature; we performed a SVM classifica-
tion on the greedy-GMM expected features (Figure 2,
left) and used the result to construct a decision bound-
ary as a means of classifying a trajectory as being either
risk-prone or risk-averse. Table 1 (first row) shows that
the GMM and human search trajectories are mostly risk-
averse, andmore surprisingly, the GMM seems to bemore
risk-averse than the GMM which seems counterintuitive.
This is due to the choice of feature-based metric which is
sensitive to the decision boundary. We use a second met-
ric based on the information gain, which we call the risk
factor, to classify trajectories as being either risk-prone or
risk-averse.
The risk factor of each individual trajectory is inversely

proportional to its accumulated information gain. Figure 7
(left), shows the kernel density estimation distribution
of the risk for each search method. Two trajectories per
search type corresponding to a supposed risk-prone and
risk-averse search are plotted in the expected feature space
in Figure 7 (right). As expected, risk-prone strategies for
which the risk tends to 1 have a low expectation of sensing
edges and corners and produce trajectories with a low
information gain, whilst those with a high expectation of
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Figure 6 Expected sensation. Plots of the expected sensation of the edge and corner feature for all trajectories. The axes are associated with the
sensor measurements; 0 means that the corresponding feature is not sensed and 1 the feature is fully sensed. A point in the plot summarise a whole
trajectory by the mean and variance of the probability of sensing a corner or edge. The radius of the circles are proportional to the variance. The
dotted blue rectangle represents the decision boundary for classifying a trajectory as being either risk-prone or risk-averse. A point which lies inside
the rectangle is risk-prone. Left: Human trajectories demonstrate a wide variety of behaviours ranging from those remaining close to features to
those preferring more risk. Right: Red points show greedy and blue points the GMMmodel. Bottom: Green circles are associated with the hybrid
method, whilst orange are those of the coastal navigation method. The hybrid method is a skewed version of the GMM which tends towards risky
behaviour and exhibits the same kind of behaviour as the coastal algorithm.

sensing features have a high information gain. Since the
metric lies exclusively in the range [0,1], we set that every
trajectory which has a risk factor lower than than 0.5
will be considered risk-averse whilst does above are risk-
prone. Table 1 (second row) illustrates the riskiness of each
search method. It is evident that humans are risk-averse
in general followed by GMM which is a smoothing of the
human data, then hybrid which as expected should be
more risk-prone since it is a linear interpolation between
the GMM and greedy search policies and finally coastal
and greedy.

Table 1 Percentage of risk-prone trajectories based on two
decision criteria

Greedy GMM Hybrid Coastal Human

Risk-prone (f) 77% 11% 30% 46% 26%

Risk-prone (r) 78% 12% 24% 45% 7%

Two decision criteria: the feature (f) and the risk (r) (information gain) metrics.

Figure 8 (top left and right) shows risk-prone (red)
and risk-averse (green) trajectories produced by human
demonstrations and by the greedy search. Both these
extremes correspond to our intuition that risk-averse tra-
jectories tend to remain closer to features or areas of high
information gain as oppose to risk-prone searches. How-
ever, to stress the case that humans have multiple search
strategies present, we performed 40 GMM searches
(model of the human behaviour) which all started
under the same initial conditions (same belief distri-
bution, true position and believed position). Figure 8
shows the resulting trajectories and expected features
for each trajectory. It is clear that multiple searches
occur which is reflected in the plot of the expected
features. All of the search strategies generated by the
GMM for this initial condition produced risk-averse
trajectories.
We conclude that there is a strong inclination towards

inferring that indeed multiple search strategies do arise



de Chambrier and Billard Robotics and Biomimetics 2014, 1:8 Page 11 of 16
http://www.jrobio.com/content/1/1/8

Figure 7 Risk of searches. Illustration of risk-prone and risk-averse searches in terms of a risk factor (left) and expected sensation (right). Left: Each
trajectory was reduced to a single scalar, which we call the risk factor, quantizing the risk of a trajectory. The risk factor is inversely proportional
to the sum of the information gain of a particular trajectory. The colour paired dots (risk averse) and squares (risk prone) represent trajectories
which are plotted in Figure 8, to illustrate that these correspond to risk-averse and risk-prone searches. Right: Corresponding trajectories chosen
in the risk factor space but represented in the feature space. As expected, trajectories with a high risk map to regions of low expected feature.
However, the transition from the risk space to feature space is non-linear and will result in a different risk-level classification than the feature metric
previously discussed.

Figure 8 Risk-prone and risk-averse searches (red and green trajectories). Top left: Two human trajectories taken from the data shown in
Figure 7. Top right: Two greedy trajectories. Bottom left: GMM trajectories, all starting from the same location; the colour coding is to illustrate the
different policies which were encoded and emerge given the same initial conditions. Bottom right: Corresponding expected features of each
trajectory. The colour coding matches the trajectories to the ‘GMM risk types’ sub-figure. All the searches which were generated by the GMM for this
initialisation produced risk-averse searches (based on the feature metric discussed previously).
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Figure 9 Illustration of three different types of modes present during the execution of the task. The robot is being controlled by the learned
GMMmodel. The white ball represents the actual position of the robot’s end effector. The blue ball represents the believed position of the robot’s
end effector and the robot is acting according to it. The blue ball arrows represent modes. Colours encode the mode’s weights given by the priors
πk after conditioning (but not re-weighted as previously described). The spectrum ranges from red (high weight) to blue (low weight). Top left:
Three modes are present, but two agree with each other. Top right: Three modes are again present indicating appropriate ways to reduce the
uncertainty. Lower left: Two modes are in opposing directions. No flipping behaviour between modes occurs since preference is given to the modes
pointing in the same direction as the robot’s current trajectory. Lower right: GMMmodes when conditioned on the state represented in the lower
left figure. The two modes represent the possible directions (un-normalised).

in the human searches since they were extracted and
encoded in the GMM model. From the risk distribution,
humans have a tendency to be risk-averse.

GMM and coastal navigation policy analysis
We next illustrate some of the modes (action choices)
present during simulation and evaluate their plausibility.
Figure 9 shows that multiple decision points have
been correctly embedded in the GMM model. All
arrows (red) indicate directions that reduce the level of
uncertainty.
Figure 10 depicts the vector fields of both coastal and

GMM models, where as expected the coastal navigation
trajectories tend to stay close to edges and corners until
they are sufficiently close to the goal. This is achieved by
weighting the information gain term I(xt) in the objective
function sufficiently (λ2). If λ2 = 0, the coastal policy is
the same greedy algorithm.
It can be further seen that when the uncertainty tends

towards its maximum value (U → 1), all behaviour
tends to go towards the edges and corners. As the
uncertainty reduces (U → 0), the vector field tends
directly towards the goal. However, even at a low level
of uncertainty, the behaviour at the edges and corners

remains multi-modal and tends to favour remaining close
to the edges and corners. This is an advantage of the
GMM model. If the uncertainty has been sufficiently
reduced and the true position of the end effector or
hand is not near an edge, the policy dictates to go
straight to the goal. This is not the case for the coastal
algorithm which ignores the uncertainty and strives to
remain in the proximity of corners and edges until suf-
ficiently close. This approach could potentially lead to
unnecessary travel cost which could otherwise have been
avoided.

Time efficiency and uncertainty
We seek to distinguish the most efficient method in terms
of two metrics, the distance taken to reach the goal and
the level of uncertainty upon arriving at the goal. We
report results on five different search experiments in
which we compare the greedy, GMM and coastal navi-
gation algorithms. The hybrid was not fully considered
since it is a heuristic combination of the greedy and GMM
methods.
In the first experiment, the true and believed locations

of the end effector were drawn uniformly from the orig-
inal start distribution (Figure 2, top right) reflecting the
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Figure 10 Illustration of the vector field for the coastal and GMM policy. Top left: Coastal policy. There is only one possible direction for every
state at any time. The values of λ2 in the cost function were set experimentally. Others: The GMM policy for three different levels of uncertainty. For
each point, multiple possible actions are possible which are reflected by the number of arrows (only the first three most likely actions). As the
uncertainty decreases, the policy becomes less multi-model, but still is around the edges and corners. Note that once being certain if one is close to
the edge there is a possibility to go either straight to the goal or stay close to the edge and corners.

default setting. The initializations (both real and believed
end effector locations) for the remaining four experiments
were chosen in order to reflect particular situations which
highlight the differences and drawbacks between each
respective search method. Figure 11 depicts the starting
points for the four searches. One hundred trials were
carried out in the search experiment for which the end
effector position and belief were initialized uniformly
(uniform search experiment). As for the other 4 search
experiments, 40 separate runs were carried for each of the
3 algorithms.
Table 2 reports the mean and variance of the distance

taken to reach the goal for each search method for all five
experiments. We report on ANOVA to test that all exper-
iments were significantly different from one another as
were the searches. We test the null hypothesis, Ho, that
there is no statistical difference between the five search
experiments. Before performing the ANOVA, we veri-
fied that our dependent variable, distance taken to reach
the goal, follows a normal distribution for all methods
and all experiments (a total of 5 × 3 = 15 tests), an
assumption which is required by an ANOVA analysis. A

Kolmogorov-Smirnov test was performed on each exper-
iment and associated search method. A total of 11/15
searches rejected the null hypothesis with a significance
level of less than 5% (p value <0.05).
In Table 3, we report the p values and F statistics for

an ANOVA on the five different experiments, where our
null hypothesis is that all experiments produce statistically
the same type of search. For all experiment types, the p
value is extremely small, below a significance value of 1%
(p value <0.01) which indicates that we can safely reject
the null hypothesis and accept that all experiments pro-
duced very different searches, which is important for a
comparative study.
As the first ANOVA only indicated that the experiments

produced different searches, we also performed a second
ANOVA test between the paired search methods, to
confirm that the methods themselves are statistically dif-
ferent. Table 4 illustrates the difference between the indi-
vidual search methods for each experiment. It was found
that most search algorithms produced significantly dif-
ferent searches (p value <0.01) with the exception of
the GMM and coastal algorithm for the uniform and
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Figure 11 Four search initializations. From top left to bottom right, we refer to them as #1 to #4, respectively. The circle with a black dot at its
centre indicates the true starting point of the end effector (eof), whilst the triangle with the black dot is the initial believed location of the eof. The
initialisation in #1 was chosen such that the true and believed eof location were at opposite sides of the table. This setting was selected to highlight
the drawback in methods which do not take into account uncertainty. The second initialisation, #2, reflects the situation where once again their is a
large distance between true and believed location of the eof. However, this time, both are right on top of the table. The starting points in #3 are a
variant on #1 but with the difference that the believed eof position is above the table whilst the true eof location is not. The last experiment, #4, was
a setup which would be favourable to algorithms which are inclined to be greedy; both true and believed eof locations are close to one another.

#3 experiment (p value <0.1). However, the GMM and
coastal trajectories for the #3 experiment appear to be
quite different when the trajectories are off the table’s
surface (see Figure 11, bottom left) but share similar char-
acteristics such as edge following behaviour.
From our ANOVA analysis, we conclude that the

behaviour exhibited by the three search strategies are sig-
nificantly different. This is certainly the case for the greedy
and GMM methods, even though in certain situations
the greedy and coastal policies display similar behaviour

Table 2 Mean distance and variance taken to reach the
goal for threemethods in five experiments

Greedy GMM Coastal

Uniform 1.5396 (0.4580) 0.9981 (0.1440) 1.1267 (0.5678)

#1 3.0205 (0.3567) 1.8220 (0.2314) 3.4383 (1.5044)

#2 0.8025 (0.0129) 1.4129 (0.1446) 0.9392 (0.0126)

#3 1.1429 (0.0804) 1.8036 (0.1670) 2.1432 (0.8136)

#4 0.7505 (0.0383) 1.3451 (0.0762) 0.6820 (0.0094)

Values are expressed as mean (variance). The entries in bold correspond to the
results of the search algorithm which obtained the fastest time to reach the goal
in each type of experiment/search.

such as in experiment #1. The reason for this is that both
the greedy and coastal policies start in a situation where
there are no salient features available, and their polices
take the true end effector location to an even more feature
deprived region. In this situation, the GMM policy is the
clear winner with respect to the distance taken to reach
the goal.
In experiment #2, both greedy and coastal policies per-

form equally well and will usually perform faster than the
GMM model if the true and believed locations of the end
effector do not leave the surface of the table. If this is
not the case, they will both reduce the uncertainty in a
very inefficient way as the modes will often change during
the period of the search, where they are in contact with

Table 3 ANOVA test of the null hypothesis (rejected): all
searches are the same

Search method

Uniform #1 #2 #3 #4

2.01e−06 (14) 5.03e−07 (19) 7.17e−11 (36) 4.1e−06 (15) 4.21e−16 (67)

Values are expressed as p value (F). All the p values are extremely small which
indicate that the null hypothesis can safely be rejected.
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Table 4 ANOVA between paired searchmethods

Greedy vs GMM Greedy vs coastal GMM vs coastal

Uniform 3.59e−08 (30) 3.32e−04 (13) 1.90e−01 (2)

#1 5.80e−08 (46) 1.88e−01 (2) 4.58e−06 (28)

#2 3.60e−08 (47) 4.68e−04 (14) 4.54e−06 (28)

#3 3.57e−07 (37) 2.07e−05 (23) 1.25e−01 (2)

#4 6.70e−10 (64) 1.58e−01 (2) 6.34e−13 (107)

Values are expressed as p value (F). The entries in bold are those in which the
null hypothesis could not be rejected. The first column gives an indication of the
probability that both the greedy and GMM searches are statistically the same
(the null hypothesis). This was rejected with a tolerance of below 1%. In the
second column, greedy vs coastal searches #1 and #4 are statistically closer than
the rest with a p value threshold of 10% required to be able to reject the null
hypothesis. In the third column, the uniform and #3 are not statistically different
and would require a higher threshold on the p value to be so.

the table. This leads to the believed position (most likely
state, x̂t) varying greatly, resulting in an increased time
period before the uncertainty has been narrowed down
sufficiently for a contact to occur with the table (or simply
by chance).
Figure 12 shows the normalised uncertainty with

respect to the distance remaining to the goal for all exper-
iments, (#3 is excluded being similar to the #2).
The results show which methods actively minimise the

uncertainty and which methods found the goal whilst

being more dependent on chance. For all the reported
experiments, the GMM (learned from human searches)
reaches a lower expected uncertainty than all other search
algorithms. For the Uniform and #1 search experiment,
all methods reach the same final uncertainty level. How-
ever, for the #2 and #4 experiments, the GMM reaches
the goal with significantly lower uncertainty. It is inferred
that the GMM model actively minimises the uncertainty
which is also reflected in the distance taken for this
method to reach the goal in comparison with the other
methods.
The rows in Table 2 for the greedy (#2) and coastal nav-

igate (#4) are an order of magnitude faster than the GMM
method. However, both have a far higher level of uncer-
tainty at the arrival which leads to the assumption that
chance has a non-negligible effect on their success.

Conclusions
In this work, we have shown a novel approach in teach-
ing a robot to act in a partially observable environ-
ment. Through having human volunteers demonstrate the
task of finding an object on a table, we recorded both
the inferred believed position of their hand and asso-
ciated action (normalised velocity). A generative model
mapping the believed end effector position to actions

Figure 12 Reduction of the uncertainty for the uniform, #1, #2 and #4 experiments. The expected value is reported. Top left: uniform
initialisation, expected uncertainty for the greedy (red), GMM (blue), hybrid (green) and coastal (orange) search strategies. Top right: experiment #1.
Bottom left: experiment #2. Bottom right: experiment #4.
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was learned, encapsulating this relationship. As specu-
lated and observed, multiple strategies are present given
a specific belief. This can be interpreted as the fact that
humans act differently given the same situation.
The behaviour recorded from the human demonstra-

tions, encoded as set of expected sensations, showed the
presence of not only trajectories which both remained
near the edge and corner features but also trajectories
which remained far away. The fact of risk-prone and risk-
averse behaviour was further confirmed by the overlap of
the risk factor of human and GMM-generated trajecto-
ries with that of the greedy risk factor. According to the
feature-based factor, more than 70% of the human search
trajectories were considered to be risk-averse, whilst 93%
according to the risk factor. Similarly, the GMM search
trajectories showed to be 89% to 88% risk-averse.
In terms of the comparative study, the GMM controller

is more adapted to dealing with situations of high uncer-
tainty and better takes it into account than greedy or
coastal planning approach. This is evident in the exper-
iment where the believed position and true position of
the end effector were significantly far apart and distant
from salient areas. Future questions of scientific value
to be addressed are to which extent do humans follow
the reasoning of a Markov decision process in a partially
observable situation where the state space is continuous
(the problem has been partially addressed in [19] for dis-
crete states and actions). A further aspect of interest is to
study the situation where multiple beliefs are present and
investigate how humans perform simultaneous localiza-
tion and mapping as opposed to active localization which
was the area of interest of this research.
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