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Abstract

This paper studies distributed rendezvous strategies for multiple nonholonomic wheeled mobile robots with the aim
of testing their practicality on real robots. We investigate control strategies which use just bearing-only or range-only
measurements and do not need inter-robot radio communication to share the measurements. For the bearing-only
case, two control laws proposed in our previous study are recalled and adapted. For the range-only case, rendezvous
control laws for a two-robot system are proposed first and it is shown analytically a two-robot system achieves
rendezvous globally under these control laws. Then the range-only-based control laws are extended to multirobot
systems. Monte Carlo simulations indicate that a multirobot system achieves practical convergence under the
range-only-based control laws. Experimental results illustrate the applicability and performance of the proposed
control strategies for multiple wheeled-robot systems.
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Background
Recent theoretical and technological advances have
spurred a broad interest to develop practical multirobot
systems [1-5]. For mobile robots, navigation skill is one of
their fundamental capabilities. Different navigation strate-
gies are appropriate for different contexts. Different sen-
sor types and sensing modules are used depending on
the application scenarios. However, a problem of common
interests and practical significance is how to perform tasks
with less information and simpler sensors, such as using
binary sensors, or using bearing-only or range-only sen-
sors. This problem has attracted much attention in the
multirobot community because an advantage of cooper-
ation of teams of robots is that simple agents are able to
perform complex tasks through mutual cooperation.
Bearing-only-based navigation is an approach to sim-

plify the sensing system and is very useful in some cases.
For example, for mobile robots equipped with single
omnidirectional camera, or radar and sonar operating in
passive listening mode, it is a practical requirement to
design control strategies based only on measurements of
bearings [6,7].
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Range-only-based navigation is another approach and
it is useful especially in those scenarios when the robots
can only sense the intensity of the signals emitted by other
robots, or, for example, underwater applications often
use acoustic equipments to measure ranges by registering
the time of flight of an echo request and reply. Gen-
erally speaking, the control design and analysis become
more challenging when each robot can only measure dis-
tances to other robots without bearing information. This
approach has a lot of applications, such as localization
and mapping [8,9], formation control [10,11], and target
enclosing [12,13]. If a robot has knowledge of its loca-
tion in a coordinate frame, then under some persistent
excitation condition, the robot may be able to get an esti-
mation of the positions of other robots. This idea has
been exploited in works such as [12,14]. However, in this
paper we are interested in those scenarios where there
is no global localization system so that absolute position
information is not available.
Recently, a lot of researchers have studied the use of

range-only-based technique to address the target track-
ing problem. This task becomes more challenging when
wheeled mobile robots are used. Because of the nonholo-
nomic constraints, wheeled mobile robots have restric-
tions in mobility and typically cannot be controlled
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by linear controllers. For example, recently, Matveev
et al. [15] proposed a sliding mode control law to drive
wheeled mobile robots towards a target and circum-
navigate the target at a predefined distance. In [16],
a two-phase switched logic-based control strategy was
proposed.
Inspired by the research on bearing-only and range-only

navigation, in this paper we consider another common
task, i.e., the rendezvous problem in which multiple non-
holonomic mobile robots are required to meet at a single
point (see [17,18] and references therein). Rendezvous
control is very useful in a variety of applications for mul-
tirobot systems. For example, a group of robots can be
deployed to collect samples from a region, and after the
task is finished, they are required to get together so that
we can collect them and transport them to a new place.
However, most existing rendezvous strategies require that
every robot knows both bearing and range of its neigh-
boring robots, which restricts many practical applications.
In this paper, we study distributed rendezvous strate-
gies using just either bearing-only or range-only mea-
surements. The bearing-only-based control schemes are
adapted from our previous work [19] and experimentally
validated in this paper. Range-only-based control schemes
are also developed. While target tracking often assumes
that the pursuer is more maneuverable than the target,
in the rendezvous application all robots employ a same
control strategy and have same maneuver. This makes the
control more difficult especially when only range informa-
tion is available. The proposed control schemes are then
experimentally implemented and validated on a group of
wheeled mobile robots.
The work presented in this paper is an extension of

our previous work reported in a conference version [20].
Although using a similar idea, the range-only controllers
in this paper are redesigned. The first difference is, in [20],
that to prove the convergence of the distance between
the robot pair, the forward velocity assumes an infinite
bound. However, in this paper, a more practical design is
provided, which allows both forward and angular veloci-
ties to lie in bounded intervals. The second difference is
that the convergence of the multirobot system under the
range-only controllers is verified by using Monte Carlo
simulations. The third difference is that the experimen-
tal platform is improved and a behavior-based collision
avoidance algorithm is used, which allows us to use more
robots in our experiments and allows us to test the per-
formance of the proposed controllers in more realistic
scenarios.
The rest of the paper is structured as follows. In

‘Methods’ section, ‘Problem description’ subsection intro-
duces the problem studied in this paper; ‘Bearing-only
controllers’ subsection presents two bearing-only-based
control schemes adapted from our previous work;

‘Range-only controllers’ subsection proposes two range-
only-based control schemes and proves their global stabil-
ity for the two-robot case. These two control schemes are
then naturally extended to themultirobot case. In ‘Results
and discussion’ section, Monte Carlo simulations are then
carried out to test the convergence of the range-only-
based control schemes in multirobot systems. ‘Results
and discussion’ section also discusses the experimental
detail and results under the proposed control schemes.
Concluding remarks are given in ‘Conclusions’ section.

Methods
Problem description
Assume N-wheeled mobile robots moving in a 2D
obstacle-free workspace. In this paper, we model each
robot as a kinematic unicycle. Then the posture of the
ith robot is represented by a triple (xi, yi, θi) where (xi, yi)
specifies the Cartesian coordinate of the center of the
robot’s body and θi gives its orientation. The motion of
each robot i ∈ {1, 2, . . . ,N} is governed by

ẋi = vi cos θi, (1a)
ẏi = vi sin θi, (1b)
θ̇i = ωi. (1c)

Here, control signals vi ∈ [−vmax, vmax] and ωi ∈
[−ωmax,ωmax] are robot i’s forward and angular speeds,
respectively, and vmax andωmax (both positive) are bounds
for forward and angular speeds, respectively. From (1),
it can be seen that the mobile robot is subjected to the
nonholonomic constraint ẏi cos θi − ẋi sin θi = 0.
Our goal is to design distributed control schemes (vi,ωi)

to get all the N nonholonomic robots to congregate at a
common location. With the distributed architecture, the
controller of robot i only uses locally measurable informa-
tion without a common reference frame, i.e., global posi-
tion information is unavailable. In this paper, we consider
two types of measurements. The first one is bearing-only
measurement, i.e., each robot can only measure the bear-
ing angles of the detectable robots in its local frame. The
second is range-only measurement, i.e., each robot is able
to measure only its distances from other robots that it can
detect.
In this paper, we assume that the interaction between

robots is bidirectional, i.e., if robot i can detect robot j
then it can also be detected by robot j and we say that
robots i and j are neighbors. This assumption is reasonable,
for example, in the case where all the robots use omni-
directional sensors with identical parameters. We then
represent the bidirectional interaction topology among
robots with an undirected graph G = (V ,E) where V is
the node set with each node corresponding to each robot
and E is the edge set such that (i, j) ∈ E implies that
robots i and j are neighbors. We denote the set of robot
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i’s neighbors as Ni, i.e., Ni = {j|(j, i) ∈ E}. A graph G
is said to be connected if there is a path between every
distinct nodes. If for any two distinct nodes i and j there
is an edge connecting them, G is said to be completely
connected.

Bearing-only controllers
In this subsection, we recall two bearing-only control
schemes published in our previous work [19]. These two
bearing-only control schemes are slightly modified here in
order to take the speed bounds into account. The proofs of
global convergence can be found in the original paper. We
aim to examine their practical performances in this paper.
We let ρij :=

√
(xi − xj)2 + (yi − yj)2 denote the distance

between robots i and j. For each robot i, we define the anti-
clockwise angle difference between robot i’s heading and
the line-of-sight that would take it directly toward another
robot j as the bearing angle of robot j in robot i’s coordi-
nate frame and denote it by αij (see Figure 1). To guarantee
that αij is well-defined, it is assumed that for two distinct
robots i and j, ρij > 0 for all t ≥ 0. If ρij ≤ ε, where ε

is an arbitrary small positive number, then robots i and j

achieve rendezvous andmerge to a single robot, either i or
j. Here, ε can be considered as a measure of the physical
size of the robot.
We adapt the following control scheme from [19]. For

each robot i,
Controller 1:

[
vi
ωi

]
=

⎧⎪⎪⎨
⎪⎪⎩

∑
j∈Ni

|Ni|

[
vmax cosαij

ωmax sinαij

]
, ifNi �= ∅,

[ 0, 0]T , otherwise.

(2)

Here |Ni| denotes the cardinality of the neighbor set Ni.
When G is connected, we can see that |Ni| ≥ 1 for all i.
The convergence of a N-robot system under Con-

troller 1 can be proved by using a Lyapunov-basedmethod
and is formally stated by the following result.
Theorem 1 ([19], Theorem 1). A system of N mobile
robots described by (1) rendezvous under Controller 1 pro-
vided that G is connected. Moreover, the energy function
V := 1

2
∑N

i=1
∑

j∈Ni ρ
2
ij keeps decreasing until the robots

achieve rendezvous.

Figure 1 An illustration of ρij ,αij and the smallest circular sector of robot k. For robot k, αk+ and αk− correspond to αki and αkl in this figure.
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When the interaction topology G between robots
are completely connected, another bearing-only control
scheme is proposed in [19] and adapted here. For each
robot i,
Controller 2:

[
vi
ωi

]
=

⎧⎪⎪⎨
⎪⎪⎩
1
2

[
vmax(cosαi+ + cosαi−)

ωmax(sinαi+ + sinαi−)

]
, if �αi ∈[ 0,π ] ,

[ 0, 0]T , otherwise.
(3)

Here, �αi ∈[ 0, 2π) is defined to be the central angle of
the smallest circular sector of robot i which contains all
the vectors (cosαij, sinαij) for j ∈ Ni , and αi+ and αi− are
defined to the bearing angles which correspond to the two
radii enclosing robot i’s circular sector (see Figure 1).
The convergence of a N-robot system under Con-

troller 2 is formally stated by the following theorem.
Theorem 2 ([19], Theorem 4). A system of N mobile
robots described by (1) rendezvous under Controller 2 pro-
vided that G is completely connected, and the perimeter
of the convex hull defined by the positions of robots keeps
decreasing until the robots achieve rendezvous.
The idea behind Controller 2 can be explained as

follows. When �αi ≤ π , robot i is located at a vertex or
on an edge of the convex hull defined by the positions of
all robots. In that case, a robot tries to shorten the dis-
tances to its neighbors which are also at the vertices or on
the edge; otherwise, it just keeps stationary. In this way,
the perimeter of the convex hull will shrink to a point and
the robots can meet each other at that point.

Remark 1. Using the pseudo-linearization technique, it
can be proven that under Controllers 1 and 2, the meeting
point is located in a bounded region which is determined
by the robots’ initial postures [19].

Range-only controllers
In this subsection, we propose two range-only control
schemes to drive wheeled mobile robots to rendezvous.
We first investigate the two-robot case and prove its global
convergence. The control schemes are then generalized to
deal with the N-robot case.
To facilitate the analysis, we consider the relative coor-

dinates ρ12, α12, and α21 between two robots 1 and 2.
After some algebraic manipulation, we get the following
equations:

ρ̇12 = −v1 cosα12 − v2 cosα21, (4a)

α̇12 = −ω1 + v1 sinα12 + v2 sinα21
ρ12

, (4b)

α̇21 = −ω2 + v1 sinα12 + v2 sinα21
ρ12

. (4c)

Note that (4) is valid when ρ12 �= 0.
Both robots are assumed to have access to only the cur-

rent distance ρ12(t) and calculate its derivative ρ̇12(t) by
using a memory unit. The bearing information, i.e., α12
and α21, is not available. In the following, we propose two
control schemes based on ρ12(t) and ρ̇12(t), which drive
two robots to rendezvous, i.e., ρ12(t) → 0 as t → +∞.
The first range-only control scheme we propose is
Controller 3:

vi = kvχ{ρ(t), ρv}, (5a)

ωi =
{
kωχ{ρ(t), ρω}ωs/ρ(t), if ρ̇(t) < 0,
kωχ{ρ(t), ρω}ωf /ρ(t), if ρ̇(t) ≥ 0,

(5b)

with ωf > ωs > 0. Here χ(x, x̄) is a saturation function

χ(x, x̄) :=
{
x, if x ≤ x̄,
x̄, if x > x̄.

In our case, the parameter x of f (x, x̄) is nonnegative and
x̄ is positive.
The rationale of Controller 3 can be explained by

observing that when a robot finds itself approaching
another robot, i.e., it is moving in the right direction, it
rotates slowly (at the speedωs) to try to keep on that direc-
tion as long as possible; otherwise, it rotates fast (at the
speed ωf ) to try to get to the right direction.
Under (5), v1 = v2 := v and ω1 = ω2 := ω. Define

ρ := ρ12, α := (α12+α21)/2 and β := (α12−α21)/2. Then
(4) can be rewritten as

ρ̇ = −2v cosα cosβ , (6a)

α̇ = −ω + 2v sinα cosβ

ρ
, (6b)

β̇ = 0. (6c)

From (6c), we can see that β is a constant under Con-
troller 3.
Theorem 3. Design Controller 3 such that

• kvρv ≤ vmax, ρv = ρω , and
• kωωf ≤ ωmax, ωf > ωs > 2kv/kω .

A two-robot system described by (1) rendezvous under
Controller 3 provided cosβ �= 0.

Proof. It is clear that when kvρv ≤ vmax and kωωf ≤
ωmax, both v and ω are in their admissible intervals.
Since ρv = ρω and ωf > ωs > 2kv/kω, then according to

(5a) we have ω > 2v sinα cosβ/ρ. Hence, α̇ < 0 in (6b).
Define tk to be the instant when α(tk) = −2kπ + π/2 for
some integer k.
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(i) Case I: cosβ > 0. According to (6),∫ ρ(tk+1)

ρ(tk)

dρ

ρ
=

∫ −2kπ−3π/2

−2kπ+π/2

2v cosα cosβ

ρω − 2v sinα cosβ
dα

= −
∫ −2kπ+π/2

−2kπ−3π/2

2v cosα cosβ

ρω − 2v sinα cosβ
dα

= −
∫ −2kπ−π/2

−2kπ−3π/2

cosα cosβ
ρω
2v − sinα cosβ

dα

−
∫ −2kπ+π/2

−2kπ−π/2

cosα cosβ
ρω
2v − sinα cosβ

dα.

Because v ≥ 0, when ρ̇(t) < 0, we have cosα > 0, i.e.,
α ∈ (−2kπ −π/2,−2kπ +π/2). Similarly, when ρ̇(t) ≥ 0,
we have cosα ≤ 0, i.e., α ∈[−2kπ − 3π/2,−2kπ − π/2].
Hence,∫ ρ(tk+1)

ρ(tk)

dρ

ρ
= −

∫ −π/2

−3π/2

cosα cosβdα

kωωf
2kv − sinα cosβ

−
∫ π/2

−π/2

cosα cosβdα

kωωs
2kv − sinα cosβ

= ln
(kωωf

2kv
− sinα cosβ

)∣∣∣∣
−π/2

α=−3π/2

+ ln
(
kωωs
2kv

− sinα cosβ

)∣∣∣∣
π/2

α=−π/2

= ln

( kωωf
2kv + cosβ

) (
kωωs
2kv − cosβ

)
( kωωf

2kv − cosβ
) (

kωωs
2kv + cosβ

) .
Because 0 < (

kωωf
2kv + cosβ)( kωωs

2kv − cosβ) < (
kωωf
2kv −

cosβ)( kωωs
2kv + cosβ), we get ln ρ(tk+1) − ln ρ(tk) < 0,

i.e., ρ(tk+1) < ρ(tk); that is, ρ(t) decreases in every
period in which α(t) decreases by 2π . Because α(t) keeps
decreasing, ρ(t) will eventually approach 0.
(ii) Case II: cosβ < 0. The proof is similar to (i).

Using a similar idea as Controller 3, the second range-
only controller is proposed. In Controller 4, instead of
applying a switch controller on the angular velocity ωi, we
apply the switching control to the forward velocity vi. Our
second range-only controller is
Controller 4:

vi =
{
ksχ{ρ(t), ρv}, if ρ̇(t) < 0,
kf χ{ρ(t), ρv}, if ρ̇(t) ≥ 0,

(7a)

ωi = kωχ{ρ(t), ρω}ω̄/ρ(t), (7b)

where kf > ks > 0.
The convergence of ρ under Controller 4 is stated in the

following result.

Theorem 4. Design Controller 4 such that

• kf ρv ≤ vmax, ρv = ρω , and
• kωω̄ ≤ ωmax, kωω̄ > 2kf .

A two-robot system described by (1) rendezvous under
Controller 4 provided cosβ �= 0.

Proof. The proof is similar to that of Theorem 3. Since
kωω̄ > 2kf , thus α̇ < 0.

(i) Case I: cosβ > 0. According to (6) and (7),

∫ ρ(tk+1)

ρ(tk)

dρ

ρ
= −

∫ −π/2

−3π/2

cosα cosβdα

kωω̄
2ks − sinα cosβ

−
∫ π/2

−π/2

cosα cosβdα

kωω̄
2kf − sinα cosβ

= ln
(
kωω̄

2ks
− sinα cosβ

)∣∣∣∣
−π/2

α=−3π/2

+ ln
(
kωω̄

2kf
− sinα cosβ

)∣∣∣∣
π/2

α=−π/2

= ln

(
kωω̄
2ks + cosβ

) (
kωω̄
2kf − cosβ

)
(
kωω̄
2ks − cosβ

) (
kωω̄
2kf + cosβ

) < 0,

thus, ρ(tk+1) < ρ(tk).
(ii) Case II: cosβ < 0. The proof is similar to (i).

To make Controllers 3 and 4 work, we need to avoid
the case of cosβ = 0. One way to do this is to introduce
some random behavior, e.g., stop moving for a while, into
the controllers if the robots detect that ρij keeps constant.
The introduction of random behavior might also be help-
ful when the system suffers slow convergence, i.e., | cosβ|
is too small.
We generalize both Controllers 3 and 4 to the N-robot

case. We call them Controllers 3e and 4e in this paper. To
simplify the controller design of ωi, here we set ρω = +∞.
Controller 3e:

vi = kvχ

⎡
⎣∑
j∈Ni

ρij, ρv

⎤
⎦ ,

ωi =

⎧⎪⎨
⎪⎩

kωωs, if
∑

j∈Ni
(ρijρ̇ij) < 0,

kωωf , if
∑

j∈Ni
(ρijρ̇ij) ≥ 0,

where ωf > ωs > 0.
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Controller 4e:

vi =

⎧⎪⎪⎨
⎪⎪⎩

ksχ
[∑

j∈Ni
ρij, ρv

]
, if

∑
j∈Ni

(ρijρ̇ij) < 0,

kf χ
[∑

j∈Ni
ρij, ρv

]
, if

∑
j∈Ni

(ρijρ̇ij) ≥ 0,

ωi = kωω̄,

where kf > ks > 0.
Work is still ongoing to discover the convergence results

for the N-robot case. However, in ‘Results and discus-
sion’ section, it is shown by means of both Monte Carlo
simulations and experiments that these two range-only-
based control schemes perform well provided that the
interaction topology G among the robots is connected.

Results and discussion
Monte Carlo simulations
The widely used Monte Carlo simulations were utilized
to infer the convergence of the N-robot system under
both Controllers 3e and 4e with connected interaction
topology. The readers are referred to [21] for more details
of Monte Carlo methods. In the simulations, for team
size N = 3, 4, . . . , 10, each N is evaluated 100 times.
All the initial configurations (positions and orientations)
of the mobile robots and the control parameters for the
controllers are generated randomly from uniform dis-
tributions over their domains respectively (see Table 1).
Without loss of generality, we set kv = kω = 1 in the
simulations. In each evaluation, the initial positions of the

Table 1 Parameters used in theMonte Carlo simulations

Parameter Value

N 3, . . . , 10

kv 1

kω 1

ρv vmax

W [ 10, 100]

xi(0) [ 0,W]

yi(0) [ 0,W]

θi(0) [ 0, 2π)

dc
√
W2/N

vmax [ 0.9, 1.1]

ωmax [ 5, 6]

ωs (2vmax, 3]

ωf (ωs + 3,ωmax]

ω̄ (2vmax, 3]

ks [ 0.4, 0.5]

kf [ 0.8, 1.0]

robots (xi(0), yi(0)) are chosen uniformly from a square
with side W and the initial orientations θi(0) are chosen
from [ 0, 2π) uniformly.
The topology G is generated in the following way: If the

distance between a pair of robots is less than dc, these
two robots are connected to each other. We then test the
connectivity of the resulting G, if G is connected, e.g.,
the corresponding Laplacian has a rank of N − 1, then
we continue the evaluation; otherwise, this evaluation is
abandoned and a new evaluation is carried out. To avoid
using an over-connected G, we chose dc = √

W 2/N in
the simulations. In each evaluation, we record the tra-
jectories of the robots during 0 to 200 s. The sampling
time Ts is set to be 0.1 s. It is tempting to chose a large
ωmax, which causes no problem for a continuous-time
system. However, a large ωmax can cause a discrete-time
realization of the system to be unstable. We found that
keeping ωmax < 10 × 2π/Ts provides enough stability
margin.
The outcome of each evaluation is the normalized aver-

age distance d(t) to the centroid of the robot team,
i.e., d(t) =

∑N
i=1 ‖(xi(t)−x̄(t),yi(t)−ȳ(t))‖∑N
i=1 ‖(xi(0)−x̄(0),yi(0)−ȳ(0))‖ , where x̄(t) =∑N

i=1 xi(t)/N and ȳ(t) = ∑N
i=1 yi(t)/N . We define the

ratio of convergence as σ = d(200 s).
For the Controller 3e, we recorded that the average

ratio of convergence is 3.0561% and max σ = 58.395%.
For the Controller 4e, we recorded that the average ratio
of convergence is 24.683% and max σ = 83.808%. Both
results imply the Controllers 3e and 4e lead to practical
convergence.

Experimental platform
The proposed control schemes were implemented and
tested for the case of five e-puck robots [22] shown
in Figure 2. The experiments were conducted in a lab

Figure 2 Experimental platform.
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environment. Because the sensing capability of the e-puck
robot is very limited, in the current implementation, an
overhead camera is used to track the absolute postures
of the robots. The information from the tracking sys-
tem is then used to produce the local bearing or range
measurements, which are utilized in order to mimic local
and distributed implementation of the proposed control
schemes.

Collision avoidance
In the theoretical analysis, the robots are treated as
moving points. However, real robot is never a point,
and therefore collision avoidance cannot be negligible
when several robots work together in a region. Colli-
sion avoidance itself, especially for nonholonomic mobile
robots, is a challenging problem (see [23] and references
therein). In our experiments, a behavior-based algorithm
is adopted, which is straightforward and computationally
effective.
It should be pointed out that using only bearing or

range information is not enough to avoid collision. We
need to assume that within a certain sensing zone Qi :=
{j|ρij ≤ ds, j �= i}, a robot can detect both the bearing
and range information, i.e., αij and ρij, about other robots
(see Figure 3). This can be done, for example, by using
short-range infrared proximity sensors mounted around
the body of the mobile robot. The forward speed vi is
multiplied by a variable mi and become the new control
signal

ṽi = mivi,

Figure 3 The partition of Qi
1 ,Q

i
2 , and Qi

3 when vi > 0.

where

mi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if Qi
1 �= ∅,

0, if Qi
2 �= ∅ and |vi| < |vj|, ∃j ∈ Qi

2 ,
2, if Qi

1 = ∅,Qi
2 �= ∅ and |vi| > |vj|,∀j ∈ Qi

2 ,
2, if Qi

1 = ∅,Qi
2 = ∅, and Qi

3 �= ∅.
The partitions Qi

1 , Qi
2 , and Qi

3 are formally defined as

Qi
1 := {

j| cosαij · vi ≥ 0 ∧ ρij| sinαij| ≤ dc
} ∩ Qi,

Qi
2 := {

j| cosαij · vi ≥ 0 ∧ ρij| sinαij| > dc
} ∩ Qi,

Qi
3 := {

j| cosαij · vi < 0
} ∩ Qi.

Notice that ṽi may not be achieved due to saturation of the
actuator.
Since the working area is bounded, the robots should

also avoid collision with the boundaries and keep inside
the working area. To do that, once detecting the bound-
aries, a robot stops moving forward and rotates at the
maximal angular speed for a short time span until its
forward direction (the direction of vi) points into the
bounded area again.

Experimental results
A variety of experiments are conducted using discrete-
time versions of the proposed controllers. The sampling
time Ts is set to be 0.1 s. The parameters used in the
experiments are given in Table 2. In the experiments,
the robots are considered to achieve rendezvous if there
is a path connecting all the robots and each edge of
the path is smaller than dmin. Despite the time delays
caused by image processing and wireless communication
and the inconsistent orientation values when the vision
system may fail to identity the orientation of a robot

Table 2 Parameters used in the experiments

Parameter Value

vmax 6 cm/s

ωmax 2.43 rad/s

ds 15 cm

dc 9 cm

dmin 12 cm

kv 1

kω 1

ρv 6 cm/s

ωs 0.63 rad/s

ωf 1.94 rad/s

ω̄ 1.46 rad/s

ks 0.3

kf 1.0
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during a certain time period, the experimental outcome
is very encouraging and indicates the robustness of the
controllers.

Controller 1
Figure 4 shows the connected interaction topology G
among the robots we used in our experiments.
Figure 5 shows the experimental result of the ren-

dezvous under Controller 1 captured by the overhead
camera. In Figure 5a, the initial postures of the robots
are shown. In Figure 5b,c,d the actual trajectories of the
robots, which are represented by sequences of colored
dots, and their final postures at different time instants are
also shown. Figure 6 confirms Theorem 1 that the energy
function V := 1

2
∑N

i=1
∑

j∈Ni ρ
2
ij decays all the time until

the robots rendezvous.
In our program, the routines run periodically based on

a Windows timer. Sometimes the routines may run out
of the time slot allocated then the positions of the robots
cannot be recorded. This explains the missing parts of the
trajectories. In analysis, for example, calculating the evo-
lution of the energy function, we recover the missing parts
of the trajectories through linear interpolation.

Controller 2
Figure 7 shows the robots rendezvous under Controller
2. The perimeter L of the convex polygon defined by the
positions of robots is plotted as a function of time in
Figure 8. Figure 8 validates Theorem 2 that the perimeter
decays all the time until the robots meet.

Controller 3e
To apply Controllers 3e and 4e, ρ̇ij(k) is approximated
by [ ρij(k) − ρij(k − 1)] /Ts where Ts is the sampling
period. The measurement error of ρij may introduce a
rapid switching in the control signal. To prevent that, we
use a simple filter ρij(k) = ∑n

l=0 alρ̂ij(k − l) to reduce the
measurement error effect. In our experiment, we choose
n = 2 and a0 = 0.8, a1 = a2 = 0.1.

Figure 4 Interaction topologyG among five robots.

We test the performance of Controller 3e under the con-
nected topology of Figure 4. The result is presented in
Figure 9. The evolution of the average distances to the
group centroid is given in Figure 10.

Controller 4e
For the Controller 4e, we also use the interaction topology
in Figure 4. The experimental result of rendezvous under
Controller 4e is given in Figures 11 and 12.
It is not a surprising result that Controllers 3e and 4e

take longer time to rendezvous than Controllers 1 and 2
do because Controllers 3e and 4e use only scalar infor-
mation while Controllers 1 and 2 use vector information.
By comparing the performances of Controllers 3e and
4e, it can be seen that a switching control of the angu-
lar speed (Controller 3e) performs better than the one
of the forward speed (Controller 4e). By comparing the
experimental results, those shown in Figures 10 and 12 for
example, we find that Controller 3e reduces the number
of oscillations of ρij so it leads to faster convergence. This
result also coincides with the observation from the Monte
Carlo simulations.

Conclusions
In this paper, we study control schemes for driving a group
of wheeled robots with nonholonomic constraints to a
common location. The proposed control schemes use only
the measurements of local bearing angles or only the mea-
surements of distances among the robots. Our purpose
is to examine whether the theoretical results obtained for
bearing-only and range-only control schemes could be
applied in practice to a real multirobot system. To this end,
experiments are conducted on a team of e-puck robots.
Given that there are unmodeled dynamic delays in the sys-
tem due to sensing and information processing and the
switching of controllers to deal with collision avoidance
which are not accounted for in the theoretical analysis, the
presented results are very positive.
However, these results are still preliminary. Further

research will include developing a more sophisticated
method of collision avoidance and implementing the
proposed control schemes on more realistic scenarios,
such as direct and dynamic interaction topology among
mobile robots. Another research topic is to consider sen-
sors with limited field-of-view and bounded range. We
also plan to implement the proposed control schemes
on mobile robots which have self-localization capability,
such as those used in [3,5], and develop the local local-
ization technique for multirobot systems [24,25]. There
are still many open questions in regards to the con-
vergence of a N-robot system. Monte Carlo simulations
indicate that Controllers 3e and 4e achieve practical con-
vergence, but a formal proof of this assertion remains an
open problem.
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Figure 5 Rendezvous under Controller 1. (a) t = 0 s. (b) t = 5 s. (c) t = 10 s. (d) t = 14 s.

Figure 6 Evolution of the energy function V (t). Here V(t) := 1
2

∑N
i=1

∑
j∈Ni

ρ2
ij (t).
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Figure 7 Rendezvous under Controller 2. (a) t = 0 s. (b) t = 5 s. (c) t = 11 s. (d) t = 13 s.

Figure 8 Evolution of the perimeter L(t).
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Figure 9 Rendezvous under Controller 3e. (a) t = 0 s. (b) t = 5 s. (c) t = 11 s. (d) t = 13 s.

Figure 10 Evaluation of the average distance to group centroid d(t).
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Figure 11 Rendezvous under Controller 4e. (a) t = 0 s. (b) t = 20 s. (c) t = 50 s. (d) t = 73 s.

Figure 12 Evaluation of the average distance to group centroid d(t).
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