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Abstract

This paper considers path following control of planar snake robots using virtual holonomic constraints. In order to
present a model-based path following control design for the snake robot, we first derive the Euler-Lagrange equations
of motion of the system. Subsequently, we define geometric relations among the generalized coordinates of the
system, using the method of virtual holonomic constraints. These appropriately defined constraints shape the
geometry of a constraint manifold for the system, which is a submanifold of the configuration space of the robot.
Furthermore, we show that the constraint manifold can be made invariant by a suitable choice of feedback. In
particular, we analytically design a smooth feedback control law to exponentially stabilize the constraint manifold. We
show that enforcing the appropriately defined virtual holonomic constraints for the configuration variables implies
that the robot converges to and follows a desired geometric path. Numerical simulations and experimental results are
presented to validate the theoretical approach.
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Introduction
Although wheels and legs are extensively used in mobile
robots and are known as the conventional locomotion
tools, we sometimes need more adaptable and flexible
locomotion systems in order to carry out tasks in com-
plex, narrow, and unstructured environments. In such
situations, snake robots, which have significant adaptabil-
ity and structural flexibility properties, are a potentially
useful alternative to conventional types of mobile robots.
Snake robots are relevant for applications where restric-
tion of human involvement is important due to safety
(e.g. in firefighting operations [1]) and in applications
where human presence is impossible (e.g. in narrow pipe
inspection tasks [2,3]).
This paper considers path following control of snake

robots. In the path following problem, the goal is to
ensure that the error between the system output and a
desired geometric path is asymptotically less than any pre-
specified constant, while guaranteeing a forward motion
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along the path and boundedness of the states of the con-
trolled system [4]. This control problem is particularly
challenging for snake robots. This is due to the fact that
such mechanisms are generally hyper-redundant, i.e. they
have a large degree of kinematic redundancy, and this
gives rise to a complicated dynamical behaviour for the
system. Moreover, snake robots are underactuated, i.e.
they have fewer independent control inputs than degrees
of freedom (DOF), and this complicates the control design
for these robots.

Background and literature review
In general, snake robots can be categorized into two
classes: snake robots which are subject to nonholonomic
velocity constraints and snake robots without nonholo-
nomic velocity constraints. Path following control of both
classes of snake robots has been considered in several pre-
vious works. The majority of these works consider snake
robots with nonholonomic velocity constraints, which is
inspired by the world’s first snake robot developed in 1972
[5]. Nonholonomic constraints are in the form of sideslip
constraints on the links of the robot, i.e. where each link
is constrained from moving sideways. These constraints
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allow the control input to be specified directly in terms
of the desired propulsion of the snake robot, which is
employed in [6-8] for computed torque control of the
position and heading of snake robots with nonholonomic
velocity constraints. In [9], position and path following
controllers are proposed for the case where some, but
not all, of the snake robot links are subject to sideslip
constraints. These constrained links can be lifted from
the ground, which give the system more DOF that can
be utilized to follow a trajectory while simultaneously
maintaining a high manipulability. Similar approaches are
considered in [10], where strategies for sinus lifting during
the lateral undulatory motion are proposed. In [11], a path
following controller for a snake robot with nonholonomic
velocity constraints is proposed, and Lyapunov analysis is
employed in order to analyse the controller.
Path following control of snake robots without nonholo-

nomic velocity constraints is only considered in a few pre-
vious works. In [12], path following control of swimming
snake robots is achieved by moving the joints accord-
ing to a predetermined gait pattern while introducing an
angular offset in each joint to steer the robot to some
desired path. Methods based on numerical optimal con-
trol are considered in [13] for determining optimal gaits
during positional control of snake robots. In [14], a control
strategy is proposed for sinus lifting during lateral undula-
tion by solving a quadratic optimization problem. In [15],
numerical simulations are used to study the properties
of lateral undulation that are related to the optimality of
motion of the snake robot. In [16,17], cascaded systems
theory is employed to achieve path following control of a
snake robot described by a simplified model. In this sim-
plified model of the snake robot, the motion of the links
is approximated as translational motion instead of rota-
tional motion, which is valid for small joint angles. In
[18], a dynamic feedback control law is proposed which
controls the body shape and orientation of the snake
robot. Controllability analysis of planar snake locomo-
tion is presented in [19], and a controller for straight line
path following control of snake robots is proposed and a
Poincare map is investigated to prove that the resulting
state variables of the snake robot, except for the position
in the forward direction, trace out an exponentially stable
periodic orbit.

Research design andmethodology
The contribution of this paper is a solution to the path
following control problem for a snake robot without
nonholonomic velocity constraints, by using virtual holo-
nomic constraints, which is a particularly useful concept
for control of oscillations (see, e.g. [20-24]). Using this
approach, we constrain the state evolution of the system
to an appropriately defined submanifold of the configura-
tion space, which is called the constraint manifold. This

manifold is defined based on the specified geometric rela-
tions among the generalized coordinates of the system
which are called virtual holonomic constraints. The pro-
posed feedback control law is designed to exponentially
stabilize the constraint manifold, i.e. to enforce the virtual
holonomic constraints, which allows the convergence of
the snake robot to the desired path.
To our best knowledge, the application of model-based

motion control approaches which rely on formal stability
proofs for snake robots is very restricted in the pre-
vious literature. In particular, the only previous works
which formally prove the stability of a path following con-
troller for a snake robot without nonholonomic velocity
constraints are presented in [17,18]. In [17], cascaded sys-
tems theory is used to stabilize a desired straight path
for the position of the center of mass (CM) of a snake
robot which is described based on simplified kinematic
and dynamic models. In contrast with [17], in this paper,
we consider a more complex and accurate model of the
snake robot, where the motion of the links is not modelled
based on the simplifying assumptions of [17]. Prelimi-
nary results of this paper are presented in [18], where
the method of virtual holonomic constraints is used for
path following control of a planar snake robot. In this
paper, these results are extended with a new simula-
tion study of a 11-link snake robot. Furthermore, we
extend the results presented in [18] by an experimental
investigation of the performance of the control approach.
A back-to-back comparison between simulations and
experimental results is given, in order to contribute to
bridge the gap between advanced control theory and
practice.
The paper is organized as follows. First, we derive the

Euler-Lagrange equations of motion of the robot. Sub-
sequently, we state the control design objectives. After-
wards, we use the virtual holonomic constraints approach
for path following control design for the snake robot.
Finally, we present the results of numerical simulations
and real-time experiments which illustrate the perfor-
mance of the theoretical control design.

Methods
In this section, we derive the kinematic model along with
the dynamic equations of motion of the snake robot in
a Lagrangian framework. Moreover, we use partial feed-
back linearization to write the model in a simpler form for
model-based control design.
In order to perform control design, we need to write the

governing equations of the system in an implementable
way. This is often done by choosing a local coordinate
chart and writing the system equations with respect to
(w.r.t.) these coordinates. According to the illustration
of the snake robot in Figure 1, we choose the vector of
the generalized coordinates of the N-link snake robot as
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Figure 1 An illustration of the N-link snake robot. Kinematic parameters of the snake robot.

x = [
q1, q2, . . . , qN−1, θN , px, py

]T ∈ R
N+2, where qi with

i ∈ {1, . . . ,N − 1} denotes the ith joint angle, θN denotes
the head angle, and the pair (px, py) describes the position
of the CM of the robot w.r.t. the global x − y axes. Since
the robot is not subject to nonholonomic velocity con-
straints, the vector of the generalized velocities is defined
as ẋ = [

q̇1, q̇2, . . . , q̇N−1, θ̇N , ṗx, ṗy
]T ∈ R

N+2. Using these
coordinates, it is possible to specify the kinematic map of
the robot. In this paper, we denote the first N elements
of the vector x, i.e. (q1, . . . , qN−1, θN ), as the angular coor-
dinates, and the corresponding dynamics as the angular
dynamics of the system.

The geometry of the problem
The (N +2)-dimensional configuration space of the snake
robot is denoted as Q = S × G, which is composed of
the shape space S and a Lie group G which is freely and
properly acting on the configuration space. In particular,
the shape variables, i.e. qa = (q1, . . . , qN−1), which define
the internal configuration of the robot and which we have
direct control on, take values in S . Moreover, the position
variables, i.e. qu = (θN , px, py), which are passive DOF
of the system, lie in G. The velocity space of the robot is
defined as the differentiable (2N + 4)-dimensional tan-
gent bundle ofQ as TQ = T

N ×R
N+4, where TN denotes

the N-torus in which the angular coordinates live. The
free Lagrangian function of the robot L : TQ → R is
invariant under the given action of G on Q. The coupling
between the shape and the position variables causes the
net displacement of the position variables, according to
the cyclic motion of the shape variables, i.e. the gait pat-
tern. Note that for simplicity of presentation, in this paper,
we consider local representation of TQ embedded in an
(2N + 4)-dimensional open subset of the Euclidean space
R
2N+4.

The forward kinematic map of the snake robot
Based on the kinematic parameters of the snake robot
given in Figure 1, it is possible to write the coordinate

representation of the forward kinematic map. The map
between the absolute link angles θi and the relative joint
angles qi is given by

θi =
N−1∑
n=i

qn + θN (1)

The position of the CM of the ith link w.r.t. the global
x-y axes can be, respectively, given as

px,i = px,0 + 2l
i−1∑
j=1

cos θj + l cos θi (2)

py,i = py,0 + 2l
i−1∑
j=1

sin θj + l sin θi (3)

where 2l denotes the length of each link, and (px,0, py,0)
denotes the tail position (cf. Figure 1). The linear velocities
of the CM of the ith link w.r.t. the global x-y axes can be
found by taking the time derivative of (2)-(3) which gives

ṗx,i = ṗx,0 − 2l
i−1∑
j=1

sin θjθ̇j − l sin θiθ̇i (4)

ṗy,i = ṗy,0 + 2l
i−1∑
j=1

cos θjθ̇j + l cos θiθ̇i (5)

Since all the links have equal length andmass, the position
of the CM for the whole structure of the robot is defined
as

(
px, py

) =
(
1
N

N∑
i=1

px,i,
1
N

N∑
i=1

py,i

)
(6)

To facilitate path following control of the CM of the snake
robot, we replace the tail position (px,0, py,0) in (2)-(3) with
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the position of the CM of the robot (px, py) using the
following change of coordinates:

px,0 = px − 1
N

N∑
i=1

⎛
⎝2l

i−1∑
j=1

cos θj + l cos θi

⎞
⎠ (7)

py,0 = py − 1
N

N∑
i=1

⎛
⎝2l

i−1∑
j=1

sin θj + l sin θi

⎞
⎠ (8)

Substituting (7)-(8) along with their time derivatives
into (2)-(5) completes the derivation of the forward kine-
matic map of the snake robot w.r.t. the desired specified
coordinate chart (x, ẋ).

Equations of motion of the snake robot
The majority of the previous literature on snake robots
and similar mobile multi-body robotic structures, such as
eel-like robots, have derived the equations of motion of
these robots with a Newton-Euler formulation, i.e. where
the equations describing the linear and angular motion of
individual links are written separately (see, e.g. [15,16]).
This is due to the fact that it is usually not straightforward
to integrate the anisotropic external dissipative forces, i.e.
ground friction forces, acting on these complex robotic
structures into their Euler-Lagrange equations of motion.
However, ground friction forces have been proved to play
a fundamental role in snake robot locomotion (see, e.g.
[16]). In this paper, we derive the equations of motion of
the snake robot in a Lagrangian framework, i.e. treating
the robot as a whole and performing the analysis using a
Lagrangian function, which is simple to follow and bet-
ter suited for studying advanced mechanical phenomena
such as elastic link deformations [25], which might be
insightful for future research challenges on snake robots.
Moreover, we integrate the anisotropic friction forces into
these equations using the Jacobian matrices of the links,
which gives a straightforward mapping of these forces for
the equations of motion.
Snake robots are a class of simple mechanical systems,

where the Lagrangian L (qa, ẋ) is defined as the difference
between the kinetic energy K(qa, ẋ) and potential energy
P(x) of the system [26]. Since the planar snake robot is
not subject to any potential field, i.e.−∇P(x) = 0, wemay
write the Lagrangian equal to the kinetic energy, which
is the sum of the translational and the rotational kinetic
energy of the robot:

L (qa, ẋ) = K (qa, ẋ) = 1
2
m

N∑
i=1

(
ṗ2x,i + ṗ2y,i

)
+ 1

2
J

N∑
i=1

θ̇2i

(9)

where m and J denote the uniformly distributed mass
and moment of inertia of the links, respectively. Using

the Lagrangian function (9), we write the Euler-Lagrange
equations of motion of the controlled system as

d
dt

[
∂L (qa, ẋ)

∂ ẋi

]
− ∂L (qa, ẋ)

∂xi
= (

B(x)τ − τf
)
i (10)

where i ∈ {1, . . . ,N + 2}, B(x) = [
ej

] ∈ R
(N+2)×(N−1) is

the full column rank actuator configuration matrix, where
ej denotes the jth standard basis vector in R

N+2. More-
over, B(x)τ ∈ R

N+2 with τ = [τ1, . . . , τN−1]T ∈ R
N−1

stands for the generalized forces resulting from the con-

trol inputs. Furthermore, τf =
[
τ 1f , . . . , τ

N+2
f

]T ∈ R
N+2

denotes viscous and Coulomb friction forces acting on
(N+2)DOF of the system. The controlled Euler-Lagrange
equations (10) can also be written in the form of a second-
order differential equation as

M (qa) ẍ + C (x, ẋ) ẋ = B(x)τ − τf (11)

where M(qa) ∈ R
(N+2)×(N+2) is the positive definite

symmetric inertia matrix, C(x, ẋ)ẋ ∈ R
N+2 denotes the

generalized Coriolis and centripetal forces, and the right-
hand side terms denote the external forces acting on the
system. The fact that the inertia matrix is only a function
of the directly actuated shape variables qa is a direct con-
sequence of the invariance of the Lagrangian function (9)
w.r.t. the position variables. Moreover, since rank [B(x)] <

dim(x), the system is underactuated. This underactuation
represents the lack of direct control on the head angle and
the position of the CM of the robot.
The dynamic model (11) perfectly agrees with the

equations of motion which are derived based on the
Newton-Euler formulation in previous works (see, e.g.
[16]). In order to validate the model, in the last section
of this paper, we present simulation results which are
obtained using the dynamic model (11) together with
experimental results for the locomotion of the robot
which are obtained using a physical snake robot. The
agreement between simulations and experiments shows
that the dynamic model (11) accurately represents the
motion of the robot.

The ground friction model
In this subsection, both viscous and Coulomb friction
models are used for capturing the essential properties of
the anisotropic ground friction forces. For modelling the
friction, we first define the rotation matrix for mapping
from the global frame to the local frame of link i (cf.
Figure 1) as

Ri =
[
cos θi − sin θi
sin θi cos θi

]
(12)
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Using (4)-(5) and (12), the velocities of the links in the
local link frames can be written in terms of the velocities
of the links in the global frame as

vlink,i =
[
vlink,it vlink,in

]T = RT
i

[
ṗx,i ṗy,i

]T (13)

where vlink,it and vlink,in denote the linear velocity of the CM
of the ith link in the tangential (along link x-axis) and nor-
mal (along link y-axis) direction of the link, respectively.
The total friction force acting on link i is defined as the
sum of the viscous and Coulomb friction forces, which are
denoted by fvi and fci , respectively, as

f link,i = fci + fvi (14)

Assuming equal friction coefficients for all the links, we
write the model of the friction for each individual link i as

fci = mg
[

μtsgn
(
vlink,it

)
μnsgn

(
vlink,in

) ]T∈ R
2 (15)

fvi =
[
ctvlink,it cnvlink,in

]T ∈ R
2 (16)

where i ∈ {1, . . . ,N}, m denotes the mass of a link, g
denotes the acceleration due to gravity, and μt and μn
denote Coulomb friction coefficients in the tangential and
normal direction of the link, respectively. Furthermore, ct
and cn denote viscous friction coefficients in the tangen-
tial and normal direction of the link, respectively. Thus,
we map the friction force acting on the ith link to the
global x-y frame as

f link,iglobal = Rif link,i (17)

Finally, we can write τf in (11) as

τf =
N∑
i=1

J T
i (x) f link,iglobal (18)

where

J T
i (x) =

[
∂ ṗx,i
∂ ẋj

,
∂ ṗy,i
∂ ẋj

]
∈ R

(N+2)×2, j ∈ {1, . . . ,N+2}
(19)

denotes the transpose of the Jacobian matrix of the CM of
the ith link.

Remark 1. As argued in [16], the motion of a snake
robot with anisotropic viscous ground friction is qualita-
tively (but not quantitatively) similar as with anisotropic
Coulomb friction. However, a viscous friction model is
less complex w.r.t. control design and analysis. Accord-
ingly, we employ a viscous friction model for the control
design in this paper.

Partial feedback linearization of the dynamic model
A common method for control of mechanical systems
is full-state feedback linearization. This approach is not
applicable for snake robots due to the underactuation.
However, it is still possible to linearize the dynamics of
the actuated DOF of the robot, which is called collocated
partial feedback linearization, and can simplify the anal-
ysis as well as the control design. A similar approach is
considered in [16], but for the sake of completeness, we
present the approach here. To this end, we separate the
dynamic equations of the robot given by (11) into two sub-
sets by taking x = [

qa, qu
]T ∈ R

N+2, with qa ∈ R
N−1 and

qu ∈ R
3 which were defined in the subsection describing

the geometry of the problem:

m11 (qa) q̈a + m12 (qa) q̈u + h1(x, ẋ) = ψ ∈ R
N−1 (20)

m21 (qa) q̈a + m22 (qa) q̈u + h2(x, ẋ) = 03×1 ∈ R
3 (21)

where m11 ∈ R
(N−1)×(N−1), m12 ∈ R

(N−1)×3, m21 ∈
R
3×(N−1), andm22 ∈ R

3×3 denote the corresponding sub-
matrices of the inertia matrix, and 03×1 = [0, 0, 0]T ∈
R
3. Furthermore, h1(x, ẋ) ∈ R

N−1 and h2(x, ẋ) ∈ R
3

include all the contributions of the Coriolis, centripetal,
and friction forces. Moreover, ψ ∈ R

N−1 denotes the
non-zero part of the vector of control forces, i.e. B(x)τ =
[ψ , 03×1]T ∈ R

N+2. From (21), we have

q̈u = −m−1
22 (h2 + m21q̈a) ∈ R

3 (22)

Substituting (22) into (20) yields

(
m11 − m12m−1

22 m21
)
q̈a −

(
m12m−1

22

)
h2 + h1 = ψ

(23)

For linearizing the dynamics of the directly actuated
DOF, we apply the global transformation of the vector of
control inputs as

ψ =
(
m11 − m12m−1

22 m21
)

ϑ −
(
m12m−1

22

)
h2 + h1

(24)

where ϑ = [ϑ1,ϑ2, . . . ,ϑN−1]T ∈ R
N−1 is the vector

of new control inputs. Consequently, the dynamic model
(20)-(21) can be written in the following partially feedback
linearized form

q̈a = ϑ ∈ R
N−1 (25)

q̈u = D(x, ẋ) + C (qa) ϑ ∈ R
3 (26)
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with

D(x, ẋ) = −m−1
22 (qa) h2(x, ẋ) = [

fθN , fx, fy
]T ∈ R

3 (27)
C (qa) = −m−1

22 (qa)m21 (qa)

= [
βi (qa) , 0, 0

]T ∈ R
3×(N−1) (28)

where βi(qa) : Q → R is a smooth scalar-valued function.
It can be numerically shown that the value of βi is negative
at any configuration qa ∈ Q. Furthermore, fθN , fx, and fy
denote the friction forces acting on θN , px, and py, respec-
tively ( fθN also contains Coriolis forces besides the friction
forces). For the aim of analysis and model-based control
design, we write (25)-(26) in a more detailed form:

q̈a = ϑ ∈ R
N−1 (29)

θ̈N = fθN (x, ẋ) + βi(qa)ϑ i ∈ R (30)
p̈x = fx(x, ẋ) ∈ R (31)
p̈y = fy(x, ẋ) ∈ R (32)

where the summation convention is applied in (30), and
henceforth, to all the equations which contain repeated
upper-lower indices (i.e. whenever an expression con-
tains a repeated index, one as a subscript and the other
as a superscript, summation is implied over this index
[26]). The dynamical system (29)-(32) is in the form of a
control-affine system with drift. In particular, the term

A(x, ẋ) = [
q̇a, q̇u, 0(N−1)×1,D(x, ẋ)

]T ∈ R
2N+4 (33)

is called the drift vector field, which specifies the dynam-
ics of the robot when the control input is zero. Further-
more, the columns of the matrix

B (qa)=

⎡
⎢⎢⎣

0(N+2)×(N−1)
IN−1[

β1 (qa) , . . . ,βN−1 (qa)
]

02×(N−1)

⎤
⎥⎥⎦∈ R

(2N+4)×(N−1) (34)

are called the control vector fields, which enable us to
control the internal configuration and consequently the
orientation and the position of the robot in the plane.

Remark 2. The last two rows of the control vectors in
(34) are composed of zero elements. This implies that the
control forces have no direct effect on the dynamics of the
position of the CM of the robot, i.e. (31)-(32). Further-
more, the dynamics of the position of the CM are coupled
with the dynamics of the directly actuated shape variables
qa, i.e. (29), only through the friction forces. Accordingly,
in the absence of the friction forces, the linear momentum
of the robot is a conserved quantity, and the position of
the CM of the robot is not controllable.

Control design objectives and the track-follow
problem formulation
In this section, we state our control design objectives
which will be followed throughout the remaining sections
of the paper. In particular, we stress that for a complex
mobile multi-link robotic structure such as a snake robot,
formulating a pure path following, trajectory tracking, or
maneuvering problem is unusual (for definitions of these
problem formulations, see [27]). This is due to the fact
that for a part of the state variables of the system (par-
ticularly the shape variables and the head angle), it is
most natural to formulate the control problem as a trajec-
tory tracking problem, while for the other state variables
(particularly the position of the CM), we may formu-
late the problem as a path following or a maneuvering
one.
To formulate a combinational track-follow problem for

the snake robot, which we define as a trajectory tracking
formulation for a subset of the state variables, together
with a path following formulation for the remaining sub-
set, we introduce the error variable for the ith joint of the
robot as

yi = qi − �i (35)

where i ∈ {1, . . . ,N − 1}, and �i ∈ R denotes a func-
tion that defines the reference trajectory for the ith joint
which will be chosen through the control design in the
next section. The head angle error is defined as

yN = θN − �N (36)

where �N ∈ R denotes the reference head angle for the
robot.
We divide the control objectives into three main parts.

In the first part, the goal is to make the shape variables of
the robot track given bounded smooth time-varying ref-
erences, i.e. asymptotic trajectory tracking problem, such
that

lim
t→∞ ‖yi(t)‖ = 0 (37)

for all i ∈ {1, . . . ,N − 1}. Furthermore, we seek to control
the head angle of the robot. The second part of the control
objective is thus to make the head angle of the robot track
a desired head angle such that

lim
t→∞ ‖yN (t)‖ = 0 (38)

Moreover, we define a desired straight path that we want
the CM of the snake robot to follow. This is defined as a
smooth one-dimensional manifold P ⊂ R

2, with coordi-
nates in the x-y plane given by the pair

(
pxd, pyd

)
, which
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are parameterized by a scalar time-dependent variable
	(t) as

P = {(
pxd(	), pyd(	)

) ∈ R
2 : 	 ≥ 0

}
(39)

We define the vector of the path following error vari-
ables for the position of the CM of the robot as p̃ =[
px(t) − pxd(	), py(t) − pyd(	)

]T ∈ R
2. Subsequently,

the third part of the control objectives is defined as prac-
tical convergence (see, e.g. [4]) of the position of the CM
of the robot to the desired path such that

lim
t→∞ sup ‖p̃(t)‖ ≤ ε (40)

where ε ∈ R>0 is an arbitrary positive scalar. Moreover,
we require that 	̇(t) ≥ 0 and limt→∞ 	(t) = ∞ (forward
motion along the path), and boundedness of the states of
the controlled system.

Path following control with virtual holonomic
constraints
The idea of virtual holonomic constraints is particu-
larly a useful concept for control of oscillations (see, e.g.
[20-24]). We will in this section show how this approach
can be used to solve the path following control problem of
snake robots. In particular, we will show how, by design-
ing the joint reference trajectories in (35) using virtual
holonomic constraints and by combining this with virtual
holonomic constraints motivated by line-of-sight (LOS)
guidance for the head angle in (36), we are able to solve the
path following control problem, i.e. achieving (40). Our
main motivation for using this approach is the fact that
while performing the gait pattern lateral undulation which
consists of fixed periodic body motions, all the solutions
of the snake robot dynamics have inherent oscillatory
behaviour. Moreover, we will show how this behaviour
can be analytically and constructively controlled based on
virtual holonomic constraints. In particular, we use the
word ‘constructive’ in the sense that through the feedback
action, we shape the dynamics of the system such that
it possesses the desired structural properties, i.e. positive
invariance and exponential stability of an appropriately
defined constraint manifold. To this end, we define a con-
straint manifold for the system, and we design the control
input of (29) to exponentially stabilize the constraint man-
ifold. The geometry of this manifold is defined based on
specified geometric relations among the generalized coor-
dinates of the system which are called virtual holonomic
constraints. In particular, we call them virtual constraints
because they do not arise from a physical connection

between two variables but rather from the actions of a
feedback controller [20].

Trajectory planning by virtual holonomic constraints
Virtual holonomic constraints are specified through C1

coordinate-dependent functions �i : Q → R which
are called the constraint functions, in the relations of the
form �i(x) = 0, which can be enforced through the feed-
back action. In particular, for the snake robot, we define a
vector-valued function

� = [�1, . . . ,�N ]T ∈ R
N (41)

in which every element defines one constraint function for
the corresponding angular coordinate of the system.
At this point, we augment the state vector of the sys-

tem with three new states that in the following will be
used in the control design. The introduction of these new
variables to the state vector of the system, which will be
used as constraint variables, is inspired by the notion of
dynamic virtual holonomic constraints [21], i.e. virtual
holonomic constraints which depend on the solutions of
a dynamic compensator. The idea is to make the virtual
holonomic constraints to depend on the variations of a
dynamic parameter, which is used for controlling the sys-
tem on the constraint manifold. The purpose of these
additional states is explained below.

1. We introduce two new states
[
φo, φ̇o

]T ∈ R
2 where

the second-order time derivative of φo will be used as
an additional control input that drives the snake
robot towards the desired path by modifying the
orientation of the robot in accordance with a path
following guidance law.

2. In the previous section, we defined the control
objective for the joints and the head angle of the
robot as a trajectory tracking problem. However, it is
known that holonomic constraints are
coordinate-dependent equality constraints of the
form �i(x) = 0, where �i is a time-independent
function [25]. Thus, we remove this explicit time
dependency from the reference joint trajectories by
augmenting the state vector of the system with a new
variable η, with η̇ = 2π/T and η(0) = 0, where T
denotes the period of the cyclic motion of the shape
variables of the robot.
Subsequently, we denote the augmented coordinate
vector of the system by

x̂ = [
q1, . . . , qN−1, θN , px, py,φo, η

]T ∈ R
N+4

(42)

and the corresponding augmented state space by TQ̂.
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Virtual holonomic constraints for the joint angles
A fundamental work in the area of snake robots was
presented by Hirose [5]. In this work, Hirose considers
empirical studies of biological snakes to derive a mathe-
matical approximation of the most common gait pattern
among biological snakes, known as lateral undulation. In
particular, the shape of a snake conducting lateral undu-
lation can be described by a planar curve (the serpenoid
curve) with coordinates in the x-y plane along the curve at
arc length s given by

x(s) =
∫ s

0
cos (a cos(bz) + cz) dz (43)

y(s) =
∫ s

0
sin(a cos(bz) + cz)dz (44)

where a, b, and c are positive scalars. Locomotion of
a snake-like structure in accordance with the serpenoid
curve, i.e. lateral undulation, is achieved if the joints of the
robot move according to the reference joint trajectories in
the form of a sinusoidal function with specified amplitude,
frequency, and phase shift. In particular, using the forego-
ing defined new states, we define a constraint function for
the ith joint of the snake robot by

�i = α sin (η + (i − 1)δ) + φo (45)

where i ∈ {1, . . . ,N − 1}, α denotes the amplitude of the
sinusoidal joint motion, and δ is a phase shift that is used
to keep the joints out of phase. Moreover, φo is an offset
value that is identical for all of the joints. It was illustrated
in [16] how the offset value φo affects the orientation of the
snake robot in the plane. Building further on this insight,
we consider the second-order time derivative of φo in the
form of a dynamic compensator, which will be used to
control the orientation of the robot. In particular, through
this control term, we modify the orientation of the robot
in accordance with a reference orientation. This will be
done by adding an offset angle to the reference trajectory
of each joint. We will show that this will steer the position
of the CM of the robot towards the desired path. The con-
straint function (45) is dynamic, since it depends on the
solution of a dynamic compensator.

Virtual holonomic constraint for the head link angle
In this subsection, we define a constraint function for
the head angle of the robot. In particular, we use a line-
of-sight (LOS) guidance law as the reference angle for
the head link. LOS guidance is a much-used method
in marine control systems (see, e.g. [27]). In general,
guidance-based control strategies are based on defining
a reference heading angle for the vehicle through a guid-
ance law and designing a controller to track this angle
[27]. Motivated by marine control literature, in [17] based

on a simplified model of the snake robot, using cascade
systems theory, it was proved that if the heading angle
of the snake robot was controlled to the LOS angle, then
also the position of the CM of the robot would con-
verge to the desired path. We will show that a similar
guidance-based control strategy can successfully steer the
robot towards the desired path. However, we perform the
model-based control design based on a more accurate
model of the snake robot which does not contain the sim-
plifying assumptions of [17] which are valid for small joint
angles.
To define the guidance law, without loss of generality, we

assign the global coordinate system such that the global
x-axis is aligned with the desired path. Consequently, the
position of the CM of the robot along the y-axis, denoted
by py, defines the shortest distance between the robot
and the desired path, often referred to as the cross-track
error. In order to solve the path following problem, we use
the LOS guidance law as a virtual holonomic constraint,
which defines the desired head angle as a function of the
cross-track error as

�N = − tan−1
(py

�

)
(46)

where � > 0 is a design parameter known as the look-
ahead distance. The idea is that steering the head angle
of the snake robot such that it is headed towards a point
located at a distance � ahead of the robot along the
desired path will make the snake robot move towards the
path and follow it.

Defining a constraint manifold
We collect all the foregoing defined constraint functions
in the following vector-valued function

� =
[
α sin(η) + φo, . . . ,α sin (η + (N − 1)δ)

+φo, tan−1
(py

�

)]T ∈ R
N (47)

For trajectory planning using virtual holonomic con-
straints, we define the constraint manifold associated with
the constraint functions (47) as

� =
{(

x̂, ˙̂x
)

∈ TQ̂ : qi = �i (η,φo) , θN = �N
(
py

)
,

q̇i = η̇
∂�i
∂η

+ φ̇o
∂�i
∂φo

, θ̇N = ṗy
∂�N
∂py

}
(48)

where i ∈ {1, . . . ,N − 1}. The constraint manifold (48)
is a six-dimensional submanifold of Q̂, since we have
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three different constraint variables, i.e. η,φo, py. The goal
of the control input is to enforce the virtual holonomic
constraints (47), by making � exponentially stable for
the closed-loop system and thereby achieving the control
objectives (37)-(38). To this end, we define the elements
of a controlled output vector y ∈ R

N for the system (29)-
(32) as the difference between the angular coordinates and
their corresponding constraint functions as

y = [
q1 − �1 (η,φo) , . . . , qN−1

− �N−1 (η,φo) , θN − �N
(
py

)]T ∈ R
N (49)

We will achieve our control design objectives which we
defined in the previous section, by designing the con-
trol inputs ϑ and φ̈o such that (yi, ẏi) → (0, 0) for all
i ∈ {1, . . . ,N}. To this end, we first need to ensure
that the given relations in (47) are stabilizable, i.e. a suit-
able choice of feedback can make the constraint manifold
exponentially stable for the closed-loop system. For sim-
plicity of notation, we denote the following differentials:

d�i = η̇
∂�i
∂η

+ φ̇o
∂�i
∂φo

(50)

d�N = ṗy
∂�N
∂py

(51)

d2�i = η̈
∂�i
∂η

+ η̇2
∂2�i
∂η2

+ φ̈o
∂�i
∂φo

+ φ̇2
o
∂2�i
∂φ2

o
(52)

d2�N = p̈y
∂�N
∂py

+ ṗ2y
∂2�N
∂p2y

(53)

where i ∈ {1, . . . ,N − 1}. The Lie derivative of (49) along
the solutions of (29)-(32) is of the form

ẏ = [
q̇1 − d�1, . . . , q̇N−1 − d�N−1, θ̇N − d�N

]T ∈ R
N

(54)

which lacks the control inputs. The Lie derivative of (54)
along the solutions of (29)-(32) is of the form

ÿ = [
ϑ1 − d2�1, . . . ,ϑN−1

− d2�N−1, fθN + βiϑ
i − d2�N

]T ∈ R
N (55)

which contains the control inputs. Consequently, the con-
trolled output vector (49) yields a well-defined vector
relative degree {2, 2, . . . , 2} everywhere on the constraint
manifold �. The virtual holonomic constraints satisfying
this vector relative degree condition are called regular, and
regular constraints are always feasible [22], i.e. there exists
a smooth feedback such that � is positively invariant for
the closed-loop system. Furthermore, regular constraints
in parametric form (47) are always stabilizable [21].

The well-defined vector relative degree {2, 2, . . . , 2} on
� implies that the system (29)-(32) with the controlled
output function (47) is input-output feedback linearizable.
Consequently, we can stabilize � with an input-output
feedback linearizing controller.

Output regulation via input-output linearization
In this subsection, we will derive a control law for (29)
such that the constraint manifold (48) with the con-
straint functions defined in (47) is globally exponen-
tially stable for the closed-loop system. In particular, we
use input-output linearization to stabilize the constraint
manifold (48).
To stabilize �i(η,φo) for the ith joint, i.e. to make

(yi, ẏi) → (0, 0) for all i ∈ {1, . . . ,N − 1}, we define an
exponentially stabilizing joint control law. The second-
order time derivative of the ith joint tracking error, i.e. the
ith element of (55), is of the form

ÿi = ϑi − d2�i (56)

We define the control input for the ith joint in (29) as

ϑi = d2�i − kpyi − kdẏi (57)

where kp > 0 and kd > 0 are the joint controller gains.
These gains are chosen similar for all the joints since the
links have similar inertial parameters. Inserting (57) into
(56) yields

ÿi + kdẏi + kpyi = 0 (58)

The tracking error dynamics of the ith joint angle (58)
clearly has a globally exponentially stable equilibrium at
the origin (yi, ẏi) = (0, 0), which implies that every ith
control input (57) exponentially stabilizes the constraint
manifold for the ith joint, and the control objective (37) is
achieved.
In the following, we aim to stabilize the constraint man-

ifold for the head angle, i.e. to make (yN , ẏN ) → (0, 0). The
head angle error corresponds to the Nth element of the
controlled output vector (49), and its second-order time
derivative (i.e. the head angle error dynamics) is given
by

ÿN = fθN + βiϑ
i − d2�N (59)

Inserting ϑi from (57) into (59) gives

ÿN = fθN +
N−1∑
i=1

βi
(
d2�i − kpyi − kdẏi

) − d2�N (60)
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which is equivalent to

ÿN = fθN +
N−1∑
i=1

βi

(
η̈

∂�i
∂η

+ η̇2
∂2�i
∂η2

+ φ̈o
∂�i
∂φo

+φ̇2
o
∂2φi
∂φ2

o
− kpyi − kdẏi

)
− d2�N

(61)

For simplicity of notation, we denote the constraint
function for the ith joint angle of the robot by�i = Si+φo,
where Si = α sin (η + (i − 1)δ). Subsequently, based on
the specified constraint functions in (47), i.e. since η̈ = 0
and ∂2φi

∂φ2
o

= 0, we may write (61) as

ÿN = fθN +
N−1∑
i=1

βi
(−η̇2Si + φ̈o − kpyi − kdẏi

) − d2�N

(62)

In order to stabilize the constraint function �N (py) for
the head angle, we define the second-order time derivative
of the augmented coordinate φo in the form of a dynamic
compensator as

φ̈o = (N−1∑
i=1

βi

)−1 (N−1∑
i=1

βi
(
η̇2Si + kpyi + kdẏi

)

+ d2�N − fθN − kp,θN yN − kd,θN ẏN

) (63)

where kp,θN > 0 and kd,θN > 0 are the head angle con-
troller gains. Notice that since βi is negative-valued in
any configuration, (63) is globally well-defined. Through
numerical simulations, we show that the states of the
dynamic compensator (63), i.e. (φo, φ̇o), remain bounded.
By inserting (63) into (62), the error dynamics of the head
angle takes the form

ÿN + kd,θN ẏN + kp,θN yN = 0 (64)

which clearly has a globally exponentially stable equilib-
rium at the origin (yN , ẏN ) = (0, 0). Consequently, we
have that (yN , ẏN ) → (0, 0) from any initial condition, and
the control objective (38) will be achieved.
Finally, we conjecture that while the output trajectories

are evolving on the constraint manifold (48), the internal
dynamics (31)-(32), which has the form

p̈x = fx
(
�, px, py,�′, ṗx, ṗy

)
(65)

p̈y = fy
(
�, px, py,�′, ṗx, ṗy

)
(66)

converge to and follow the desired planar path. Analyt-
ically investigating the convergence of the snake robot

position to the desired path is a topic of future work. As a
preliminary support of this conjecture, we provide simu-
lation and experimental results which show that the snake
robot successfully converges to and follows the desired
path.

Simulation results
In this section, we present simulation results which illus-
trate the performance of the proposed path following
controller. We considered a snake robot with N = 11
links, m = 1 kg, l = 0.07 m, and J = 0.0016 kg m2

(Figure 2). The friction coefficients were cn = 10 and ct =
1. The parameters of the joint constraint functions (45)
were α = π/6 rad, η = 70π t/180 rad, and δ = 36π/180
rad. The controller gains in (57) and (63) were tuned as
kp = 10, kd = 5, kp,θN = 20, kd,θN = 1, and � = 1.4 m. In
order to calculate �̇N and �̈N , we employed the approach
taken in [27] by passing �N through a low-pass filter of
the form

�̇ =
[

0 1
−ω2

n −2ψf ωn

]
� +

[
0
ω2
n

]
�N (67)

with natural frequency ωn = π/2 rad, damping ratio
ψf = 1, and initial condition�(0) = [0, 0]T . As seen from
the simulation results which are presented in Figures 3, 4,
5, 6, 7, the snake robot successfully converges to and fol-
lows the desired path. In particular, Figure 3 shows that
the solutions of the dynamic compensator (63) remain
bounded. Figure 4 shows that the joint angles track the
reference angles provided by the constraint functions (45),
while the tracking errors converge exponentially to zero.
Figure 5 shows that the head angle tracks the reference
head angle provided by the constraint function (46), while
the tracking error converges to zero exponentially fast.
Finally, Figure 6 shows that the CM of the robot con-
verges to and follows the desired straight path. Moreover,
in order to show the performance of the proposed tracking
control law (57) in the presence of angular position mea-
surement noise, we subjected every ith joint angle qi to
an additive noise by using Matlab function randn() which
generates normally distributed pseudorandom numbers

Figure 2 An illustration of the experimental setup. Snake robot
Wheeko was used for the experiments.
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Figure 3 The states of the dynamic compensator in simulations.
The states of the dynamic compensator remain bounded.

that can be considered as measurement noise for the joint
angles. In particular, we added randn(1) to each joint
angle qi in each integration step. The result of the simu-
lation is presented in Figure 7, which shows that the joint
tracking errors converge to a very small neighbourhood of
zero in the presence of measurement noise.

Experimental results
In this section, we present results from an experimental
investigation of the real-time performance of the pro-
posed control strategy using a mechanical snake robot.

Experimental setup
The experiment was carried out using the snake robot
Wheeko [16]. The robot, which is shown in Figure 2, has

Figure 4 Joint angles tracking the reference joint angles in
simulations. The joints of the robot track the sinusoidal motions
(above). The joint tracking errors converge exponentially to zero
(below).

Figure 5 Head angle tracking error in simulations. The head angle
tracking error converges exponentially to zero.

10 identical joint modules, i.e. N = 11 links. Each joint
module is equipped with a set of passive wheels which
give the robot anisotropic ground friction properties dur-
ing motion on flat surfaces. The wheels are able to slip
sideways and thus do not introduce nonholonomic veloc-
ity constraints in the system. Each joint is driven by aHitec
servo motor (HS-5955TG; Hitec RCD USA, Inc., Poway,
CA, USA), and the joint angles are measured using mag-
netic rotary encoders. The motion of the snake robot was
measured using a camera-based motion capture system
from OptiTrack of type Flex 13 (NaturalPoint, Inc., Cor-
vallis, OR, USA). The system consists of 16 cameras which
are sampled at 120 frames per second and which allow
reflective markers to be tracked on a submillimetre level.
During the experiment, reflective markers were mounted
on the head link of the snake robot in order to measure

Figure 6 The motion of the center of mass in the x-y plane in
simulations. The position of the CM of the robot (blue) converges to
and follows the desired straight line path (the x-axis).
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Figure 7 Joint angles tracking the reference joint angles in
simulations in the presence of measurement noise. The joints of
the robot track the sinusoidal motions in the presence of
measurement noise (above). The joint tracking errors converge
exponentially to a neighbourhood of zero in the presence of
measurement noise (below).

the position (px,N , py,N ) and orientation (θN ) of the head.
These measurements were combined with the measured
joint angles (q1, . . . , qN−1) of the snake robot in order to
measure the absolute link angles (1) and the position of
the CM (px, py) of the robot. In order to obtain the deriva-
tives of the reference head angle (46), we used the same
technique as in the simulations, i.e. passing �N through
a low-pass filter of the form (67). The parameters of the
low-pass filter were set to ωn = π/2 and ψf = 1.
In the following, we elaborate on a few adjustments that

were made in the implemented path following controller
in order to comply with the particular properties and
capabilities of the physical snake robot employed in the
experiment. We conjecture that these adjustments only
marginally affected the overall motion of the robot. The
successful path following behaviour of the robot demon-
strated below supports this claim. Since the experimental
setup only provided measurements of the joint angles and
the position and orientation of the head link, we chose to
implement the joint controller in (57) as

ϑi = −kpyi (68)

where i ∈ {1, . . . , 10}. We conjecture that eliminating the
joint angular velocity terms from (57) did not significantly
change the dynamic behaviour of the system since the
joint motion was relatively slow during the experiment.
The main consequence of excluding the velocity terms
from (57) is that we potentially introduce a steady-state
error in the tracking of the joint angles. Consequently,
since with the joint control law (68) the derivative terms
in (63) are identically zero, they need not to be linearized
in the head angle dynamics by the dynamic compensator.

As the result, we implemented the dynamic compensator
of the form

φ̈o =
(N−1∑

i=1
βi

)−1 (−fθN + d2�N − kp,θN yN − kd,θN ẏN
)

− kpφo − kdφ̇o (69)

where the controller gains were kp,θN = 20, kd,θN = 1,
kp = 10, and kd = 5.We saturated the joint angle offset φo
according to φo ∈ [−π/6,π/6], in order to keep the joint
reference angles within reasonable bounds w.r.t the max-
imum allowable joint angles of the physical snake robot.
Moreover, from Figure 2, it can be seen that the head link
of the physical snake robot does not touch the ground
since the ground contact points occur at the location of
the joints. As a results, we implemented (69) with fθN ≡
0. The solutions of the dynamic compensator (69) were
obtained by numerical integration in LabVIEW which was
used as the development environment.
We chose the look-ahead distance of the path following

controller as � = 1.4 m. The initial values for the con-
figuration variables of the snake robot were qi = 0 rad,
θN = −π/2 rad, px = 0.3 m, and py = 1.7 m, i.e. the
snake robot was initially headed towards the desired path
(the x-axis), and the initial distance from the CM to the
desired path was 1.7 m. Furthermore, the parameters of
the constraint functions for the joint angles, i.e. (45), were
α = π/6, η = 70π t/180, and δ = 36π/180, while the
ground friction coefficients were ct = 1 and cn = 10 (i.e
identical to the simulation parameters).

Results and discussion
The results of the experiments are illustrated in Figures
8, 9, 10, 11, 12, 13. In particular, Figure 8 shows that the

Figure 8 The solution of the dynamic compensator in
experiments. The solution of the dynamic compensator remains
bounded during the experiments.
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Figure 9 Joint angles tracking the reference joint angles during
the experiments. The joints of the robot track the sinusoidal motions
(above). The tracking errors converge to a neighbourhood of zero
during the experiment (below).

solution of the dynamic compensator remained bounded.
Figure 9 shows that the joints of the robot tracked the
sinusoidal reference angles provided by the constraint
functions (45) and that the tracking error converged to
a neighbourhood of the origin. As discussed above, this
is probably due to the modification of the joint con-
troller (68) due to the lack of velocity measurements in
the lab. Figure 10 shows that the head angle of the robot
tracked the reference head angle defined by the constraint
function (46) and that the tracking error converged to a
neighbourhood of the origin. Figure 11 shows the motion
of the CM of the robot in the x-y plane, which converged
to and followed the desired path. Figure 12 compares
the motion of the CM during the simulation and the

Figure 10 Head angle tracking error during the experiments. The
head angle tracks the reference head angle (above). The head angle
tracking error converges to a neighbourhood of zero (below).

Figure 11 The motion of the center of mass in the x-y plane
during the experiments. The position of the CM of the robot (blue)
converges to and follows the desired straight path (the x-axis).

experiment, which were performed using the same con-
troller parameters in order to obtain comparable results.
In particular, from Figure 12, it can be seen that the phys-
ical snake and the simulated snake follow almost the same
path. However, due to precise measurement and a more
accurate joint control law for the simulated snake, the
path following error converges to a smaller neighbour-
hood of the origin. Figure 13 shows screenshots from a
video recording of the experiment.

Conclusions
This paper has considered path following control of planar
snake robots by using virtual holonomic constraints. The
equations of motion of the snake robot were derived using

Figure 12 Comparison between experiments and simulations.
Comparison of the convergence of the cross-track error during
simulations (red) and experiments (blue).
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Figure 13 An image of the motion of the robot during the experiments. The robot converges to and follows the desired path.

a Lagrangian framework. We then introduced virtual
holonomic constraints that defined the geometry of a con-
straint manifold for the robot. We showed that the con-
straint manifold can bemade positively invariant by a suit-
able choice of feedback, and we designed an input-output
feedback linearizing control law to exponentially stabi-
lize the constraint manifold for the system. We presented
simulation and experimental results which validated the
theoretical design. In particular, the robot successfully
converged to and followed a desired straight path.
As a topic of future work, we aim to prove the practi-

cal stability of the desired path with the proposed control
approach. Furthermore, a formal proof for boundedness
of the solutions of the dynamic compensator remains
as a topic of future work. Moreover, application of the
proposed control strategy for more complex paths such
as curved paths, using different path following guidance
laws, remains as a topic of future work.
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