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Performance analysis of 3-D shape measurement
algorithm with a short baseline projector-camera
system
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Abstract

A number of works for 3-D shape measurement based on structured light have been well-studied in the last
decades. A common way to model the system is to use the binocular stereovision-like model. In this model, the
projector is treated as a camera, thus making a projector-camera-based system unified with a well-established
traditional binocular stereovision system. After calibrating the projector and camera, a 3-D shape information is
obtained by conventional triangulation. However, in such a stereovision-like system, the short baseline problem
exists and limits the measurement accuracy. Hence, in this work, we present a new projecting-imaging model based
on fringe projection profilometry (FPP). In this model, we first derive a rigorous mathematical relationship that exists
between the height of an object’s surface, the phase difference distribution map, and the parameters of the setup.
Based on this model, we then study the problem of how the uncertainty of relevant parameters, particularly the
baseline’s length, affects the 3-D shape measurement accuracy using our proposed model. We provide an extensive
uncertainty analysis on the proposed model through partial derivative analysis, relative error analysis, and sensitivity
analysis. Moreover, the Monte Carlo simulation experiment is also conducted which shows that the measurement
performance of the projector-camera system has a short baseline.
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Introduction
Noncontact optical measurement methodology has been
widely used in many industrial applications, such as indus-
try inspection and 3-D printing manufacturing. Among
these mature optical 3-D measurement techniques, the
structured light technique has been widely used in recent
years due to its good characteristics of high precision,
flexibility, and robustness to texture-less object surface
reconstruction. Numbers of works have been presented in
this issue [1-3]. According to a different model, the me-
thods for obtaining 3-D shape information with a struc-
tured light system can be simply divided into two main
categories: one common way is using conventional bin-
ocular stereo vision or named ‘CSV’ model and the other
strategy is adopting fringe projection profilometry (FPP)
technique. In the first category, the projector is always
treated like a camera. In this model, projector and camera
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in the system are always required to be pre-calibrated
before 3-D shape measurement task. Many camera calib-
ration methods are available to be utilized directly [4,5].
However, for projector calibration, even with the latest
accurate calibration methods using active target and
phase-shifting technique [17,18], the accuracy of pro-
jector calibration can hardly reach as the same level as the
camera. One of the intuitive reasons is that the parameters
of a projector cannot be calibrated individually without
the help of camera. Thus, the error propagation from
camera calibration process is unavoidable and the overall
system calibration accuracy is limited. The biased cali-
brated parameters of camera and projector will decrease
the measurement accuracy. Particularly, in a short base-
line arrangement system, the bias from feature point loca-
lization on the image will also be magnified with biased
parameters. Therefore, how to accurately calibrate a short
baseline arrangement system is more critical than a
general configuration system which usually has a much
larger baseline. In the second category, the projector is
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commonly regarded as grating optical device. The height
information is obtained from the phase-to-height mapping
relationship between phase distribution and geometric pa-
rameters of the system. Hence, the projector is not needed
to be pre-calibrated anymore. In some presented phase-
to-height model, even the camera is also not required to
be pre-calibrated [7,8].
In this paper, our method falls into the second category.

We propose a generic FPP-based projecting-imaging mo-
del and explore the relationship between the phase distri-
bution, height information, and geometric parameters of
the system. Based on the proposed model, we then study
the problem of how the uncertainty of relevant parame-
ters, the length of baseline in particular, affects the 3-D
shape measurement accuracy. In other words, we focus on
the performance analysis of the 3-D shape measurement
according to our proposed model particularly when the
system has a short baseline.

Background and literature review
Conventional stereovision model
The schematic diagram of a projector-camera (Pro-Cam)
structured light system is illustrated in Figure 1. The key
problem in the 3-D shape measurement process is how
to determine the corresponding relationship between the
point on camera’s image plane, projector’s image plane,
and the point on the object’s surface. It is worthy
noticing that these three points also represent the three
vertices of a triangle, respectively. Generally, the struc-
tured light pattern projected from a projector plays a role
of bridge. Once the relationship between the projector
Figure 1 Schematic diagram of a Pro-Cam structured light system.
image plane and camera image plane is established, the
short baseline arranged 3-D shape measurement system,
which is illustrated in Figure 1, can be unified with a
classic binocular stereovision system.
Given a point on the camera’s image plane and its

corresponding point on the projector’s image plane,
the coordinate of its corresponding point on the object’s
surface can be determined by conventional triangulation
algorithm [16,19]. The relationship between nondistorted
point mu(uc, vc) on the camera’s image plane and its corre-
sponding point PW = [XW,YW, ZW]T on the object’s surface
can be described as follows:
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where (uc0, vc0) is the coordinate of the principle point.
fcx and fcy are the focal length in pixels of the camera
image plane along u and v axes, λc denotes the skewness
of the two image axes on the camera’s image plane.
Then perspective transformation of camera imaging pro-
cess can be simplified from Equation 1 and denoted as
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Figure 2 A brief structure of a short baseline stereovision
system setup.
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Similar for the projector, using phase-shifting tech-
nique [17], we can obtain a similar relationship:
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Arranging the variables, we can get the following rela-
tionship from Equations 2 and 3.

K ⋅ P ¼ Q; ð4Þ
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[XW,YW, ZW]T. It is worth to note that if we are given
the real distorted image point md, it has to be trans-
formed to the nondistorted point mu first. However, it is
difficult to directly get the analytical inversion from
distorted image point to nondistorted image point. In
this work, the iterative method [12] is adopted and the
iteration relationship is given as follows:

mu ¼ md− k1r2 þ k2r4ð Þmu þ 2k3xuyu þ k4 r2 þ 2xu2ð Þ
k3 r2 þ 2yu
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Therefore, if we know the real pixel point pair mc

d ucd;
�

vcdÞ and mp
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, the remainder point in the triangle

which is also the corresponding point in 3-D space
PW(XW,YW, ZW)

T, can be obtained by

P ¼ KTK
� �−1

KTQ: ð6Þ
It is well known that 3-D shape measurement accuracy

can be improved through appropriately enlarging the
baseline between two optical devices [6,15]. One intuitive
reason is that by enlarging the baseline, the ambiguity of
the correspondence problem which lies between the pixel
on the right camera’s image plane and left camera’s image
plane can be alleviated. A brief schematic of a short
baseline stereovision system setup is shown in Figure 2.
Because the pixel on the image plane has a certain phys-
ical size, the feature point A and the feature point B lie in
the same uncertainty area (UA) which is denoted as blue
rhombus. All the points lying in this area are correspond-
ing to the same pixel point on the right camera and left
camera’s image plane, respectively. In other words, all
the points lying in the same UA present the same depth
information. Hence, the short baseline problem can be
defined, that is, the depth measurement error, which can
be denoted as UA shown in Figure 2, will be enlarged in a
short baseline system.
Equation 6 shows that an accurate measurement result

is depending on the four factors: (1) accurate determi-
nation of the pixel point mcu(uc, vc)

T on camera’s image
plane, (2) unbiased camera’s parameters, (3) unbiased
projector’s parameters, and (4) accurate determination
of the pixel point which corresponds to the pixel point
on the projector’s image plane. The first two conditions
are easy to be satisfied with available camera calibration
algorithm [4,18] and well-developed image processing
technique [19,20]. However, the latter two are much
more difficult to be achieved. Furthermore, since the
projector cannot ‘capture’ like a camera, how to determine
the corresponding pixel point on the projector’s image
plane is a challenge. If the pixel point on the projector’s
image plane is biased, as Figure 2 shows, the measurement
error will be enlarged in a short baseline arranged Pro-
Cam system.

FPP-based phase-to-height mapping model
Fringe projection techniques have been used for 3-D
object surface measurement for years because of its
flexibility and good performance characteristic. In these
techniques, the projector is commonly regarded as grating
optical device, and series of fringe patterns (commonly
sinusoidal fringe patterns) are projected onto an object’s
surface and then captured from other direction by a
camera. The captured fringe patterns are deformed with
respect to the geometry of the object’s surface. Hence, the
intensity distribution of the deformed pattern on the
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image plane can be retrieved through phase-measuring
techniques. One of the classic techniques is Fourier-
transform analysis [7]. The other widely used technique
is phase-shifting algorithm [2]. Whichever technique is
adopted, the critical final step is to create a mapping rela-
tionship between the pixel point on the image plane, its
corresponding phase, and the height information. One of
the basic geometry setup of the measuring system is
shown in Figure 3. In the setup, the optical axis IcO of the
imaging system camera system is perpendicular to the ref-
erence plane. The optical axis IpO of the projection system
intersects with the optical axis IcO at point O and makes
an angle π/2 − θ with the reference plane. The line joining
the two optical centers is the baseline b, and the projector
and the camera have equal height Lp = Lc = L with respect
to the reference plane. In the work in [8], the phase and
height relationship is simply derived using the triangula-
tion method, which is

h x; yð Þ ¼ λ ΔφADj j; ð7Þ
λ ¼ Lp=2πb: ð8Þ

However, there are two hypotheses assumed in this
work. Firstly, the distance between the camera’s optical
center and the reference plane is much larger than the
height of the object, which is L≫ h in general case. The
other assumption is that the periodicity of projected
fringe pattern, which is denoted as p on the reference
plane, is evenly distributed along with axis Xw. However,
in the practical case, the above hypothesis conditions are
just two ideal conditions. A thorough analysis in [8] in-
dicates that the periodicity of projected fringe pattern
which distributes on the reference plane is in fact a func-
tion of the lateral coordinate x, the periodicity p0 of the
projecting pattern on the LCD image plane, and the
Figure 3 The basic geometry setup of a Pro-Cam system.
angle θ between projector and camera. Hence, in the
work in [9], based on the same geometry system setup
shown in Figure 3, a more practical expression for phase
and height relationship is given as follows:

h x; yð Þ ¼ L=
2πL2b cosθ

p0 ΔφADj j Lþ xcosθsinθð Þ2 −
b cosθ sinθ

Lþ x cosθ sinθ
þ 1

" #
:

ð9Þ
More accurate results were reported in this work.

However, the requirement of parallelity and orthogonal-
ity in the work in [8,10] still limited the generality and
flexibility in the actual measurement. Therefore, an im-
proved structure of the measurement system is pre-
sented by the work in [3]. In this structure, which is
shown in Figure 4, the line joining the optical centers of
the projector system and camera system is not parallel
to the reference plane but makes an angle with the
reference plane. In addition, both optical axes are not
required to be orthogonal to the reference plane. Compar-
ing with the structure in the basic setup shown in Figure 3,
it is more general and closer to practical situation.
After transforming the World Coordinate System to

the charge-coupled device (CCD) imaging coordinate
system, a final phase-to-height relationship in given as
follows [3]:

h x; yð Þ ¼ C1 ΔφADj j þ C2u ΔφADj j
1þ C3uþ C4 ΔφDj j þ C5 ΔφADj j þ C6u ΔφDj j þ C7u ΔφADj j

ð10Þ
where coefficients C1 to C7 are related to the geometric
parameters of the measuring system and the intrinsic
and extrinsic parameters of the imaging system. It is
worthy noticing that there is another work presented by
Du and Wang [1]. In this work, the two optical devices
Figure 4 A generic geometry setup of a Pro-Cam system.



Liu and Li Robotics and Biomimetics 2014, 1:1 Page 5 of 10
http://www.jrobio.com/content/1/1/1
(camera and projector) are arbitrarily arranged; in other
words, the geometry structure is also generic and has no
special restriction. In other words, it implies that their
model fits the case where the baseline between two op-
tical devices could be as small as it could. The phase-to-
height mapping relationship was given similarly like in
Equation 10, which is described as follows:

h x; yð Þ ¼ C0 þ C1φD þ C2 þ C3φDð ÞID þ C4 þ C5φDð ÞJD
D0 þ D1φD þ D2 þ D3φDð ÞID þ D4 þ D5φDð ÞJD

;

ð11Þ

where coefficients C0 to C5 and D0 to D5 are related to
the geometric parameters of the measuring system and
the intrinsic and extrinsic parameters of the imaging sys-
tem. As we can see from Equations 10 and 11, in either
of the works [1] and [3], the parameters which are phys-
ically meaningful (i.e., the length of the baseline) in the
presented phase-to-height mapping model are hardly an-
alyzed due to the difficulty of isolating these parameters
from the calibrated coefficients. Moreover, they utilized
a least-square method to calibrate the coefficients, yet
not the related geometric parameters. Therefore, it is ne-
cessary to present a practical and analyzable model for
convenient analyzing the geometry parameters. In par-
ticular, due to the specificity of our proposed short base-
line arrangement system, the baseline’s length influence
is given the priority to be analyzed. Based on the generic
setup in the work [3], we derive a new and different mo-
del for accurate phase-to-height mapping determination
and parameters analysis.

Research design and methodology
In the following, a phase-to-height mapping model is
presented for parameters’ influence analysis. In this
model, a rigorous mathematical relationship that exists
between the height of an object’s surface, the phase dif-
ference distribution map, and the parameters of the
setup is firstly derived. Based on this model, we then
study the problem of how the uncertainty of relevant
parameters, particularly the baseline’s length, affects the
3-D shape measurement accuracy. The uncertainty ana-
lysis on the proposed model including partial derivative
analysis, relative error analysis, and sensitivity analysis
are performed. Moreover, the Monte Carlo simulation
experiment is also conducted.

Methods
Our proposed projecting and imaging model
The geometric optical geometry of our setup is shown in
Figure 4. Ip and Ic are the exit pupil and entrance pupil
of the projector and camera, respectively. The optical axes
IpO and IcO cross the reference plane at point O and
make angles θ1 and θ2 with ZW axis (i.e., the normal
direction of the reference plane), respectively. The base-
line between these two optical centers is IpIc = b, which
is not parallel to the reference plane. M is the perpen-
dicular projection point of Ip on the reference plane,
and the distance between them is IpM = Lp. N is the
perpendicular projection point of Ic on the reference
plane, and the distance between them is IcN = Lc. Point
A on the reference plane and point P on the object sur-
face correspond to the same image pixel location on the
CCD plane. Point C on the reference plane and point P
on the object surface are on the same pixel ray projec-
ting from the projector. We add several dashed lines in
the figure as guidelines for analysis. The dashed line IpF
is parallel with the reference plane and crosses the ex-
tension line of BP (BP = h) at point D, which intersects
with lines IcP and IcN at points E and F respectively. In
this work, we mainly focus on the measurement per-
formance with respect to the influence of one parame-
ter, which is the baseline b. Hence, similarly to the work
in [10], we can assume that the fringe patterns formed
by the projector are parallel to YW. From the geometry
setup in Figure 4, we can get that the triangle APB is
similar with the triangle EIcF,

AB=EF ¼ PB=IcF ¼ PB=b sin α: ð12Þ
Similarly, from the fact that triangle APB is similar

with triangle ANIc and triangle ACP is similar with triangle
IpPE, we can get

AB=AN ¼ PB=IcN ¼ PB=Lc; ð13Þ

AC=PB ¼ IpE=PD ¼ IpF−EF
� �

=PD
¼ Lp tanθ1 þ Lc tanθ2−EF

� �
= Lp−PB
� �

: ð14Þ

Submitting Equation 12 into Equation 14, we can get

AC=PB ¼ Lp tanθ1 þ Lc tanθ2− AB ⋅ b sin α=PBð Þ� �
= Lp−PB
� �

:

ð15Þ

Note that AN =AC +OC +ON =AC + x + Lc tan θ2,
submitting this relationship and Equation 16 into 18,
we obtain

PB ¼ LpLcAC=½ACLc þ LpLc tanθ1 þ L2c tanθ2

− AC þ xþ Lc tanθ2ð Þb sin α�
ð16Þ

where p denotes the periodicity of the fringe patterns
on the reference plane under divergent illumination.
According to the work in [3], we can get

AC ¼ p⋅ φC−φAj j=2π ¼ p⋅ ΔφPAj j=2π ð17Þ
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Submitting Equation 17 into Equation 16, we can
get the final relationship between the phase distribu-
tion φ(x, y) and the height information h(x, y), which
is expressed as

h x; yð Þ ¼ LpLcp ΔφPA x; yð Þj j� �
=½ p−pb sin αð Þ ΔφPA x; yð Þj j−2πbx sin α

þ 2πLpLc tanθ1 þ 2πL2c tanθ2−2πLc tanθ2b sin α�:
ð18Þ

It can also be written in a concise form as

h x; yð Þ ¼ c1 ΔφPA x; yð Þj j= c2 ΔφPA x; yð Þj j þ c3xþ c4½ �;
ð19Þ

where parameters c1, c2, c3, c4 are related with geometric
parameters Lp, Lc, p, b, α, θ1, θ2 and can be denoted as

c1 ¼ LpLcp; c2 ¼ p−pb sin α
c3 ¼ −2πb sin α; c4 ¼ 2πLpLc tanθ1 þ 2πL2c tanθ2−2πLc tanθ2b sin α

:

�

ð20Þ

Performance analysis
Influence of the length of baseline b
The geometric parameters of the system setup include
the angle between the optical axis of the projector and
the camera, the distance between optical center of camera
system and reference plane, the focal length of camera
system and the periodicity of projected fringe patterns,
etc. In this paper, we regard the baseline’s length as
the priority factor and focus on the length of base-
line’s influence on the final measurement result. From
Equation 19, we can transform it into another form, which
takes the baseline b as an input variable and is expressed
as follows:
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Figure 5 Plot of the measurement errors ∂h/∂b versus the height wit
h x; yð Þ ¼ K1 x; yð Þ= K2 x; yð Þ−K3 x; yð Þ ⋅ bð Þ ð21Þ

where
K1 x; yð Þ ¼ LpLcp ΔφPA x; yð Þj j

K2 x; yð Þ ¼ p ΔφPA x; yð Þj j þ 2πLpLc tanθ1 þ 2πL2c tanθ2
K3 x; yð Þ ¼ p sin α ΔφPA x; yð Þj j þ 2πx sin αþ 2πLc tanθ2 sin α:

8<
:

From Equation 19, we get the relationship between the
phase difference and the height information:

ΔφPA x; yð Þj j ¼ h x; yð Þ c3xþ c4ð Þ
hc2−c1

: ð22Þ

Similar to the derivative method in the work in [10],
the partial derivative of Equation 23 with respect to the
baseline b is calculated, and Equations 18 and 19 are
submitted into the result. We get

∂h x; yð Þ=∂b ¼ Q1h
2 x; yð Þ−Q2h

2 x; yð Þb−Q3h x; yð Þ� �
= Q4 −Q5bð Þ

ð23Þ

where
Q1 ¼ 2πp sin α LpLc tanθ1 þ L2c tanθ2 þ x− xb sinαþ Lc tanθ2 − Lc tanθ2b sin α

� �
Q2 ¼ 2πp sin2α Lc tanθ2 þ xbð Þ
Q3 ¼ 2πpLpLc x sin αþ Lc tanθ2 sin αð Þ
Q4 ¼ 2πpLpLc2 Lp tanθ1 þ Lc tanθ2

� �
Q5 ¼ 2πpLpLc Lc tanθ2 sin αþ x sin αð Þ:

8>>>><
>>>>:
Equation 23 shows that the height error ∂h(x, y)/∂b is

a function of the parameters Q1,Q2,Q3,Q4,Q5, b, h. The
dependence of ∂h(x, y)/∂b on h is shown in Figure 5 with
respect to the variation of other parameters Q1,Q2,Q3,
Q4,Q5. The red curve and blue curve in Figure 5 indi-
cate the lengths of baseline b = 30 mm and b = 120 mm,
respectively. A real experimental system setup consists of
a pico-projector (Optoma PK301; Optoma USA, Fremont,
CA, USA) and a mini-camera (Point Grey FL3-U3-
13S2M-CS; Point Grey Research KK, Chiyoda-ku, Tokyo,
Japan) with a 6-mm focal length. Hence, the parameters
variation are in the following ranges: Lp from 390 to
60 70 80 90 100
t h(mm)

h respect to the different length of baseline.
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420 mm, Lc from 400 to 450 mm, p from 10 to 20 mm,
θ1 from 0° to 15°, θ2 from 0° to 10°, α from 0° to 30°, x
from −150 to 150 mm.
It is important to note that the parameters in the

following analysis are also falling into this range. The
results shown in Figure 5 indicate that in the two
cases (the baseline b = 30 mm and the baseline b =
120 mm), the measurement error becomes larger as
the height of target object increases. However, in the
red curve which indicates the shorter baseline case
(b = 30 mm), the measurement error is smaller (less
than 0.1); meanwhile, the relationship between ∂h(x, y)/∂b
and h is almost linear. On the other hand, when the
baseline changes to a larger value (b = 120 mm), the
relationship between the measurement error ∂h(x, y)/∂b
and h is nonlinear and as the height of the object
increases the measurement error increases faster than
the shorter baseline (b = 30 mm). In particular, when
the height of target object equals to 100 mm, the
maximum value of the measurement error is larger
than 0.5.
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Figure 6 Plot of the relative measurement error δh/h versus the base
parameters K1,K2,K3 go to the maximum value.
Relative measurement error analysis
A relative measurement error analysis is also conduc-
ted with respect to other parameters K1, K2, K3 while
the baseline is assumed fixed. Suppose there are small
errors δK1, δK2, δK3 existing in the parameters K1, K2,
K3, respectively. The relative measurement error of
height δh/h can be expressed by the following generic
approximation:

δh=h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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 �2
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þ ∂h
∂K3

δK3


 �2
s

=h

ð24Þ
Submitting Equation 21 into Equation 24, we can

obtain

δh=h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δK1

2 þ h2δK 2
2 þ b2h2δK3

2
q

=K 1: ð25Þ

Equation 25 indicates that the relative measurement
error δh/h is a function of the length of baseline b, the
parameters K1, K2, K3, and their variation δK1, δK2, δK3.
60 70 80 90 100

t h (mm)

60 70 80 90 100

t h (mm)

line b. (A) For parameters K1,K2,K3 go to the minimum value. (B) For
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The results are shown in Figure 6. Without loss of
generality, we set the variation of parameters δK1, δK2,
δK3 = 0.01. The results tell us that when the height of
the target object increases to 100 mm, the yellow curve
which represents the largest baseline configuration system
(b = 120 mm) yields the biggest relative measurement
error, which is 25%, 0.0005% for minimizing and maximi-
zing the parameters K1,K2,K3 respectively. Meanwhile,
the red curve (b = 30 mm) presents the smallest relative
measurement error, which is 5%, 0.0001% for minim-
izing and maximizing the parameters K1, K2, K3 res-
pectively. Hence, we can get the same conclusion that if
the length of the baseline increases, the relative error of
the measured height becomes bigger, when the same
errors δK1, δK2, δK3 are introduced into the system.

Sensitivity analysis
Furthermore, we take a sensitivity analysis with respect to
the baseline b. In the following part, be represents the
estimates of b and Δb/b = (be − b)/b indicates the relative
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Figure 7 Plot of relative variation of height Δh/h as a function of rela
value of parameters K2 K3. (B) With respect to the maximum value of param
discrepancy with respect to the nominal values. The error
Δh can be expressed as the difference between the depth
values calculated by substituting the two values be and b
into Equation 21:

Δh ¼ K 1

K2−K 3be
−

K 1

K 2−K3b
: ð26Þ

When Equations 22 and 26 are combined, relative
error Δh/h results:

Δh=h ¼ K 1

K 2−K3be
=

K 1

K 2 −K 3b
− 1 ¼ −

Δb
b

1

1þ Δb
b − K2=K3

b

ð27Þ
Equation 27 expresses Δh/h as a hyperbolic function

of Δb/b, but for small values of Δb/b, the function is
almost linear, as shown in Figure 7. The yellow curve
which represents the largest baseline configuration sys-
tem (b = 120 mm) yields the smallest relative variation of
height with respect to the same relative discrepancy of
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ancy of baseline b

b=30mm
b=60mm
b=60mm
b=120mm

0 0.02 0.04 0.06 0.08 0.1
ancy of baseline b
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baseline, while the red curve which represents the shor-
test baseline arrangement system (b = 30 mm) presents
the biggest relative variation of height. This means that
for a system with a shorter baseline, the proposed model
is more sensitive to the small variation of other parame-
ters. In other words, we can get the conclusion that the
larger the baseline, the less sensitive is the system with
respect to the same bias in the calibrated parameters.
This conclusion is the same as presented in the discus-
sion part of the work [11].
Figure 9 Plot the variation of measured height with respect to the di
Results and discussion
A measurement error analysis with respect to the varia-
tion of baseline has been performed using partial deri-
vative analysis, relative measurement error analysis, and
sensitivity analysis. These analysis methods have been
limited to parameters Lp, Lc, θ1, θ2, α, p, x and can be ac-
curately calibrated. Parameters p, x can be easily evalu-
ated with small uncertainty during the measurement by
exploitation of the scale factor from pixels to millime-
ters in the reference frame. On the contrary, accurate
determination of parameters Lp, Lc, θ1, θ2, α is hard due
to the difficulty of precisely measuring the position of
the pupils of the projector and of the camera. Mean-
while, it is also hard to determine the accurate relative
orientation of the DMD image plane in a DLP-based
projector. Hence, in order to eliminate the effect of
other unknown uncertainty factors introduced into the
analysis process, one way of doing the uncertainty
propagation estimation for nonlinear systems is using
Monte Carlo analysis [13,14]. The real experimental
system setup (shown in Figure 8) consists of a pico-
projector (Optoma PK301) and a mini-camera (Point
Grey FL3-U3-13S2M-CS) with a 6-mm focal length.
Hence, the variation of the parameters can be defined
the same as in the previous part.
We present a global sensitivity analysis that permits

the evaluation of the uncertainty distribution from other
input parameters (i.e., Lp, Lc, θ1, θ2, α) to the output (the
height information) with respect to the different baseline
lengths. In this method, we use four objects with diffe-
rent heights for the experiment. After that, in order to
obtain the distribution map of height value, we change
the length of baseline and its relevant parameters (i.e.,
θ1, θ2, α), but keep the other parameters unchanged. It is
worth noticing that the unchanged parameters in the
evaluating process are randomly selected from the given
range.
fferent baseline lengths.
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Figure 9 illustrates the measured height variation (com-
paring with selected ground truth value) which is corre-
sponding to the random variation of other parameters
when the baseline changes from 30 to 120 mm. The initial
parameters are randomly selected in the pre-measured
range for these four tests. We conduct each set of running
for 30 times; in each set, we get the height information
from the same sampled point on the object’s surface (i.e.,
x = 188.63 mm). As we can see from the figure, the
biggest variations of height are 0.6404, 0.8835, 2.1207,
and 4.1729 mm for given baselines of 30, 60, 90, and
120 mm, respectively. Moreover, at each experiment set,
when the baseline changes are bigger, the variation of
height also increases.

Conclusions
In this paper, 3-D shape measurement error analysis is
performed based on a short baseline Pro-Cam system.
The first model is based on conventional stereovision
technique. Through analysis, we obtain that as the base-
line becomes shorter, the two main factors, which are
the inherent biased parameters of the projector and un-
avoidable biased pixel point localization on the projec-
tor’s image plane, have more uncertainty. Therefore, the
measurement accuracy is further destroyed. In the sec-
ond one, we propose a FPP technique-based projecting-
imaging model. After deriving a new phase-to-height
mapping relationship, measurement error which mainly
refers to the height error is analyzed with respect to the
length of baseline through partial derivative analysis, rela-
tive measurement error analysis, and sensitivity analysis.
From the analysis result, we conclude that the smaller the
baseline, the more sensitive the system is and the relative
measurement error is smaller when if the same biases are
introduced in the calibrated parameters. The Monte Carlo
simulation experimental results also demonstrate the
same measurement result using the proposed model
under the short baseline configuration.
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