
Rahman et al. Robot. Biomim. (2018) 5:8
https://doi.org/10.1186/s40638-018-0091-9

RESEARCH

Implementation of Q learning and deep
Q network for controlling a self balancing robot
model
MD Muhaimin Rahman1*  , S. M. Hasanur Rashid1 and M. M. Hossain2

Abstract 

In this paper, the implementations of two reinforcement learnings namely, Q learning and deep Q network (DQN) on
the Gazebo model of a self balancing robot have been discussed. The goal of the experiments is to make the robot
model learn the best actions for staying balanced in an environment. The more time it can remain within a specified
limit, the more reward it accumulates and hence more balanced it is. We did various tests with many hyperparameters
and demonstrated the performance curves.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Introduction
Control system is one of the most critical aspects of
Robotics Research. The Gazebo is one of the most robust
multi-robot simulators at present. The ability to use the
Robot Operating System (ROS) with Gazebo makes it
more powerful. However, there is very few documen-
tation on how to use ROS and Gazebo for Controllers
development. In our previous paper, [1], we attempted to
demonstrate and document the use of PID, Fuzzy logic
and LQR controllers using ROS and Gazebo on a self-
balancing robot model. Later on, we have worked on
Reinforcement learning. In this paper, we have the imple-
mentation of Q Learning and Deep Q Network on the
same model. The paper is structured as follows. “Related
works” section shows the related works on the sub-
ject. “Robot model” section discusses the Robot Model.
“Reinforcement learning methods as controllers” sec-
tion shows the implementation of Q Learning and DQN
as controllers. Finally, “Conclusion and future work” sec-
tion is the conclusion.

Related works
Lei Tai and Ming Liu [2] had worked on Mobile Robots
Exploration using CNN based reinforcement learn-
ing. They trained and simulated a TurtleBot on Gazebo
to develop an exploration strategy based on raw sensor
value from the RGB-D sensor. The company ErleRobotics
have extended OpenAI environment to Gazebo [3]. They
have deployed Q-learning and Sarsa algorithms for vari-
ous exploratory environments. Loc Tran et al. [4] devel-
oped a training model for an Unmanned aerial vehicle
to explore with static obstacles in both Gazebo and the
real world, but their proposed Reinforcement learning
is unclear from the paper. Volodymyr Sereda [5] used
Q-learning on a custom Gazebo model using ROS in
exploration strategy. Rowan Border [6] used Q-learning
with neural network presentation for robot search and
rescue using ROS and Turtlebot.

Robot model
The robot model is described in the paper [1]. It has
one chassis and two wheels. The task of the model is to
keep the robot balanced, i.e., keeping its pitch angle in
between ± 5°. The more it remains in between the lim-
its, the more it gets the reward. Figure 1 shows the block
diagram and Fig. 2 shows the Gazebo model of the self-
balancing robot.

Open Access

*Correspondence: sezan92@gmail.com
1 Department of Mechanical Engineering, Bangladesh University
of Engineering and Technology, Dhaka, Bangladesh
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7430-5136
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-018-0091-9&domain=pdf

Page 2 of 6Rahman et al. Robot. Biomim. (2018) 5:8

Controller
The robot’s IMU sensor measures the roll, pitch and
yaw angles of the chassis every second and sends them
to the controller. The controller then calculates opti-
mum action value to make the chassis tilt according
to set point. Figure 3 shows the control system of the
robot.

Reinforcement learning methods as controllers
Previously, we worked on traditional Controllers like
PID, Fuzzy PD, PD+I & LQR [1]. The biggest prob-
lem with those methods is that they need to be tuned
manually. So, reaching optimal values of controllers
depends on many trials and errors. Many times opti-
mum values aren’t achieved at all. The biggest benefit of
reinforcement learning algorithms as controllers is that

the model tunes itself to reach the optimum values. The
following two sections discuss Q Learning and Deep Q
Network (Additional file 1).

Q learning
Q-learning was developed by Christopher John Cornish
Hellaby Watkins [7]. According to Watkins, “it provides
agents with the capability of learning to act optimally in
Markovian domains by experiencing the consequences
of actions, without requiring them to build maps of the
domains” [8]. In a Markovian domain, Q function—the
model to be generated using the algorithm—calculates
the expected utility for a given finite state s and every
possible finite action a. The agent—which is the robot
in this case—selects the optimum action a having the
highest value of Q(s, a) , this action choosing rule is also
called Policy [8]. Initially, the Q(s, a) function values are
assumed to be zero. After every training step, the values
get updated according to the following equation (Addi-
tional file 2)

Algorithm
The objective of the model in our project is to keep
it within limits, i.e., ± 5°. At first, the robot model, Q
matrix, policy π are initialized. There are some interest-
ing points to make. The states are not finite. Within the
limit range, hundreds and thousands of pitch angles are
possible. Having thousands of columns is not possible.
So, we discretized the state values into 20 state angles
from − 10° to 10°. For action value, we chose ten differ-
ent velocities and they are [− 200, − 100, − 50, − 25,
− 10, 10, 25, 50, 100, 200] ms−1. The Q matrix had 20
columns, each column representing a state and ten rows
each representing every action. Initially, the Q-values
were assumed to be 0, and some random actions were
specified for every state in the policy π . We trained for
1500 episodes, each episode having 2000 iterations. At
the beginning of each episode, the simulation refreshed.
Whenever the robot’s state exceeded the limit, it was
penalized by assigning a reward to −100 . The Q Table is
updated at each step according to Eq. 1. The Algorithm 1
shows the full algorithm. (Additional file 3)

Result and discussion
The simulation was run for three different α values
(0.7, 0.65, 0.8), with γ value of (0.999). Figure 4 shows
the rewards vs episodes for those α s. It is evident that
the robot couldn’t earn the targeted amount of rewards
within the training period for those learning rates. We
see that, for the α values of 0.7 and 0.8, the robot reached
at maximum possible accumulated rewards, 2000, within
400 episodes. The curve with the α value of 0.7 is less

(1)Q(s, at) ← Q(s, at)+ α(r + γmaxQ(st+1, a))

Fig. 1  Simple block diagram of the model

Fig. 2  Gazebo model

Fig. 3  Controller block diagram

Page 3 of 6Rahman et al. Robot. Biomim. (2018) 5:8

stable compared to that of 0.8. However, The curve with
the α value of 0.65 never achieved the maximum accu-
mulated reward (Additional file 4).

Deep Q network (DQN)
Mnih et al. [9] first used Deep Learning as a variant of
Q Learning algorithm to play six games of Atari 2600,
which outperformed all other previous algorithms. In
their paper, two unique approaches were used.

•	 Experience Replay
•	 Derivation of Q Values in one forward pass (Addi-

tional file 5).

Experience replay
The technique of Experience Replay, experiences of an
agent, i.e., (state, reward, action, statenew) are stored over
many episodes. In the learning period, after each epi-
sode, random batches of data from experience are used
to update the model [9]. According to the paper, there are
several benefits to such an approach (Additional file 6).
They are-

•	 It allows greater data efficiency as each step of expe-
rience can be used in many weight updates

•	 Randomizing batches break correlations between
samples

•	 Behaviour distribution is averaged over many of its
previous states.

Fig. 4  Rewards for different α

Page 4 of 6Rahman et al. Robot. Biomim. (2018) 5:8

Derivation of Q values in one forward pass
In the classical Q learning approach, one has to give state
and action as an input resulting in Q value for that state
and action. Replicating this approach in Neural Net-
work is problematic as one has to give state and action
for each possible action of the agent to the Model (Addi-
tional file 7). It will lead to many forward passes in the
same model. Instead, they designed the model in such
a way that it will predict Q values for each action for a
given state. As a result, only one forward pass is required.
Figure 5 shows a sample architecture for one state with
two actions

Implementation on the robot model
The implementation of the DQN on our Robot model
is similar to Q Learning Method. However, there are
some exceptions. At first, a model was initialized
instead of Initializing Q matrix. In the ǫ greedy policy,
instead of choosing the action based on policy π , Q val-
ues were calculated according to the model. At the end
of every episode, the model was trained using random
mini batches of experience. At first, an architecture
with two hidden Relu layers of 20 units was selected
whereas the last layer was a Linear Dense layer with
ten units. With the γ of 0.999 and α of (0.65, 0.7, 0.8) .
Algorithm 2 shows the DQN algorithm as implemented
on the robot model.

Fig. 5  Sample deep Q network architecture

Page 5 of 6Rahman et al. Robot. Biomim. (2018) 5:8

Architecture
The architecture of the model is simple. It is a Multi-layer
perceptron network, with two hidden layers of 40 nodes.
the last layer is of 10 output nodes. The activation func-
tion we used in every hidden layer is Rectified Linear
Unit. The last layer has linear activation function (Fig. 6).

Training
From Fig. 7, we see that the total rewards for α (0.65) are
significantly higher. It starts approximately from 1750
and reaches the maximum total rewards, 2000 within
the 200th episode. However, the accumulated rewards
with α values of 0.7and 0.8 are meager. They have accrued
rewards approximately 50–60 for the whole time. Later,
the architecture was changed to 2 hidden layers of 40
Relu Units where the value of γ was selected to be 0.9.
Figure 8 shows that both curves reached the highest
accumulated rewards within 200 episodes in the new
configuration.

Comparison to traditional methods
In our previous paper, [1], we evaluated the performance
of PID, Fuzzy Logic and LQR on a self-balancing robot
model and compared among those controllers. Figure 9
shows the performance curves for PID, Fuzzy P, LQR and
DQN. It shows that LQR and Fuzzy controllers were not
so stable like PID, although we had to tune all of them
manually. The DQN performance curves are more sta-
ble than fuzzy P and LQR.But less stable than PID. There
are two reasons behind being less stable can be, that the
PID algorithm is giving continuous action values, while
our architecture is designed for discrete values. The sec-
ond reason is the reward function for this architecture is
to limit the pitch angle between − 5° and 5°. Narrowing
down that range will help the architecture to perform
better (Additional file 8).

Conclusion and future work
The implementation of Q Learning and Deep Q Network
as a controller in the Gazebo Robot Model was shown
in this paper. It showed the details of the algorithms.

Fig. 6  Schematic diagram of DQN architecture used

Fig. 7  Rewards for three different α s with γ 0.999

Fig. 8  Rewards versus episodes for new architecture

Fig. 9  Performance curve for PID, fuzzy logic and LQR

Page 6 of 6Rahman et al. Robot. Biomim. (2018) 5:8

However, some further improvements can be made. Like,
It was assumed that the robot would work on Marko-
vian State space, which generally not the case. In gen-
eral, Inverted pendulum models are Non-markovian
models. So there must exist some dependencies among
the states. So In future, Recurrent Neural Network has
a great possibility. Moreover, ten predefined values of
velocities for action were used. In the real world applica-
tion, action values have continuous range. So for more
complex models, this method may not work. In that case,
deep reinforcement learning algorithms with continuous
action space like Actor-Critic Reinforcement Learning
algorithm [10] can be used. Finally, this work should be
improved toward real-world scenarios.

Additional file

Additional file 1. PID1:Performance Values of PID with Kp 100, Ki 0.5, Kd
0.1.

Additional file 2. FuzzyPD: Performance Values of Fuzzy PD control system.

Additional file 3. FuzzyPD+I: Performance Values of Fuzzy PD+ I control
system.

Additional file 4. LQ1R1: Performance values of LQR control system with Q
10 and R 100.

Additional file 5. LQ2R2: Performance values of LQR control system with Q
100 and R 1000.

Additional file 6. PID2: Performance values of PID control system Kp 50, Ki
0.8 and kd 0.05.

Additional file 7. PID3: Performance values of PID control system Kp 25, Ki
0.8 and kd 0.1.

Additional file 8. P1: Performance values of P control system Kp 50000.

Authors’ contributions
The original project is this paper and [1]. The contributions of MDMR is the
simulations and writing of this paper. The contributions of SMHR and MMH is
reviewing both papers. All authors read and approved the final manuscript.

Author details
1 Department of Mechanical Engineering, Bangladesh University of Engineer-
ing and Technology, Dhaka, Bangladesh. 2 Department of Electrical and Elec-
tronic Engineering, Bangladesh University of Engineering and Technology,
Dhaka, Bangladesh.

Competing Interests
The authors declare that they have no competing interests.

Funding
The paper has no external source of funding.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published-
maps and institutional affiliations.

Received: 12 April 2018 Accepted: 28 November 2018

References
	1.	 Rahman MDM, Rashid SMH, Hassan KMR, Hossain MM. Comparison of

different control theories on a two wheeled self balancing robot. In: AIP
conference proceedings, 1980; 1: 060005. 2018. https​://aip.scita​tion.org/doi/
abs/10.1063/1.50443​73.

	2.	 Tai L, Liu M. Mobile robots exploration through cnn-based reinforcement
learning. Robot. Biomim. 2016;3(1):24. https​://doi.org/10.1186/s4063​
8-016-0055-x.

	3.	 Zamora I, Lopez NG, Vilches VM, Cordero AH. Extending the openai gym for
robotics: a toolkit for reinforcement learning using ROS and gazebo. CoRR,
vol. abs/1608.05742, 2016. http://arxiv​.org/abs/1608.05742​.

	4.	 Tran LD, Cross CD, Motter MA, Neilan JH, Qualls G, Rothhaar PM, Trujillo
A, Allen BD. Reinforcement learning with autonomous small unmanned
aerial vehicles in cluttered environments. In: 15th AIAA aviation tech-
nology, integration, and operations conference, Jun 2015. https​://doi.
org/10.2514/6.2015-2899.

	5.	 Sereda V. Machine learning for robots with ros, Master’s thesis, Maynooth
University. Maynooth, Co. Kidare, 2017.

	6.	 Border R. Learning to save lives: Using reinforcement learning with environ-
ment features for efficient robot search. White Paper, University of Oxford,
2015.

	7.	 Watkins CJ. Learning from delayed rewards. Ph.D. dissertation, Kings’s Col-
lenge, London, May 1989.

	8.	 Watkins CJCH, Dayan P. Q-learning, Machine Learning, vol. 8, no. 3, pp.
279–292, May 1992. https​://doi.org/10.1007/BF009​92698​.

	9.	 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D,
Riedmiller MA. Playing atari with deep reinforcement learning, CoRR, vol.
abs/1312.5602, 2013. [Online]. Available: http://arxiv​.org/abs/1312.5602.

	10.	 Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu
K. Asynchronous methods for deep reinforcement learning, In: Proceedings
of The 33rd International Conference on Machine Learning, ser. In: Proceed-
ings of Machine Learning Research, Balcan MF, Weinberger KQ, (eds), vol. 48.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1928–1937. http://
proce​eding​s.mlr.press​/v48/mniha​16.html.

https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://doi.org/10.1186/s40638-018-0091-9
https://aip.scitation.org/doi/abs/10.1063/1.5044373
https://aip.scitation.org/doi/abs/10.1063/1.5044373
https://doi.org/10.1186/s40638-016-0055-x
https://doi.org/10.1186/s40638-016-0055-x
http://arxiv.org/abs/1608.05742
https://doi.org/10.2514/6.2015-2899
https://doi.org/10.2514/6.2015-2899
https://doi.org/10.1007/BF00992698
http://arxiv.org/abs/1312.5602
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html

	Implementation of Q learning and deep Q network for controlling a self balancing robot model
	Abstract
	Introduction
	Related works
	Robot model
	Controller

	Reinforcement learning methods as controllers
	Q learning
	Algorithm
	Result and discussion

	Deep Q network (DQN)
	Experience replay
	Derivation of Q values in one forward pass
	Implementation on the robot model
	Architecture
	Training

	Comparison to traditional methods
	Conclusion and future work
	Authors’ contributions
	References

