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model
MD Muhaimin Rahman1*  , S. M. Hasanur Rashid1 and M. M. Hossain2

Abstract 

In this paper, the implementations of two reinforcement learnings namely, Q learning and deep Q network (DQN) on 
the Gazebo model of a self balancing robot have been discussed. The goal of the experiments is to make the robot 
model learn the best actions for staying balanced in an environment. The more time it can remain within a specified 
limit, the more reward it accumulates and hence more balanced it is. We did various tests with many hyperparameters 
and demonstrated the performance curves.
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Introduction
Control system is one of the most critical aspects of 
Robotics Research. The Gazebo is one of the most robust 
multi-robot simulators at present. The ability to use the 
Robot Operating System (ROS) with Gazebo makes it 
more powerful. However, there is very few documen-
tation on how to use ROS and Gazebo for Controllers 
development. In our previous paper, [1], we attempted to 
demonstrate and document the use of PID, Fuzzy logic 
and LQR controllers using ROS and Gazebo on a self-
balancing robot model. Later on, we have worked on 
Reinforcement learning. In this paper, we have the imple-
mentation of Q Learning and Deep Q Network on the 
same model. The paper is structured as follows. “Related 
works” section shows the related works on the sub-
ject. “Robot model” section discusses the Robot Model. 
“Reinforcement learning methods as controllers” sec-
tion shows the implementation of Q Learning and DQN 
as controllers. Finally, “Conclusion and future work” sec-
tion is the conclusion.

Related works
Lei Tai and Ming Liu [2] had worked on Mobile Robots 
Exploration using CNN based reinforcement learn-
ing. They trained and simulated a TurtleBot on Gazebo 
to develop an exploration strategy based on raw sensor 
value from the RGB-D sensor. The company ErleRobotics 
have extended OpenAI environment to Gazebo [3]. They 
have deployed Q-learning and Sarsa algorithms for vari-
ous exploratory environments. Loc Tran et al. [4] devel-
oped a training model for an Unmanned aerial vehicle 
to explore with static obstacles in both Gazebo and the 
real world, but their proposed Reinforcement learning 
is unclear from the paper. Volodymyr Sereda [5] used 
Q-learning on a custom Gazebo model using ROS in 
exploration strategy. Rowan Border [6] used Q-learning 
with neural network presentation for robot search and 
rescue using ROS and Turtlebot.

Robot model
The robot model is described in the paper [1]. It has 
one chassis and two wheels. The task of the model is to 
keep the robot balanced, i.e., keeping its pitch angle in 
between ± 5°. The more it remains in between the lim-
its, the more it gets the reward. Figure 1 shows the block 
diagram and Fig. 2 shows the Gazebo model of the self-
balancing robot.
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Controller
The robot’s IMU sensor measures the roll, pitch and 
yaw angles of the chassis every second and sends them 
to the controller. The controller then calculates opti-
mum action value to make the chassis tilt according 
to set point. Figure  3 shows the control system of the 
robot.

Reinforcement learning methods as controllers
Previously, we worked on traditional Controllers like 
PID, Fuzzy PD, PD+I & LQR [1]. The biggest prob-
lem with those methods is that they need to be tuned 
manually. So, reaching optimal values of controllers 
depends on many trials and errors. Many times opti-
mum values aren’t achieved at all. The biggest benefit of 
reinforcement learning algorithms as controllers is that 

the model tunes itself to reach the optimum values. The 
following two sections discuss Q Learning and Deep Q 
Network (Additional file 1).

Q learning
Q-learning was developed by Christopher John Cornish 
Hellaby Watkins [7]. According to Watkins, “it provides 
agents with the capability of learning to act optimally in 
Markovian domains by experiencing the consequences 
of actions, without requiring them to build maps of the 
domains” [8]. In a Markovian domain, Q function—the 
model to be generated using the algorithm—calculates 
the expected utility for a given finite state s and every 
possible finite action a. The agent—which is the robot 
in this case—selects the optimum action a having the 
highest value of Q(s, a) , this action choosing rule is also 
called Policy [8]. Initially, the Q(s, a) function values are 
assumed to be zero. After every training step, the values 
get updated according to the following equation (Addi-
tional file 2)

Algorithm
The objective of the model in our project is to keep 
it within limits, i.e., ±  5°. At first, the robot model, Q 
matrix, policy π are initialized. There are some interest-
ing points to make. The states are not finite. Within the 
limit range, hundreds and thousands of pitch angles are 
possible. Having thousands of columns is not possible. 
So, we discretized the state values into 20 state angles 
from − 10° to 10°. For action value, we chose ten differ-
ent velocities and they are [−  200, −  100, −  50, −  25, 
−  10, 10, 25, 50, 100, 200] ms−1. The Q matrix had 20 
columns, each column representing a state and ten rows 
each representing every action. Initially, the Q-values 
were assumed to be 0, and some random actions were 
specified for every state in the policy π . We trained for 
1500 episodes, each episode having 2000 iterations. At 
the beginning of each episode, the simulation refreshed. 
Whenever the robot’s state exceeded the limit, it was 
penalized by assigning a reward to −100 . The Q Table is 
updated at each step according to Eq. 1. The Algorithm 1 
shows the full algorithm. (Additional file 3)

Result and discussion
The simulation was run for three different α values 
(0.7,  0.65,  0.8), with γ value of (0.999). Figure  4 shows 
the rewards vs episodes for those α s. It is evident that 
the robot couldn’t earn the targeted amount of rewards 
within the training period for those learning rates. We 
see that, for the α values of 0.7 and 0.8, the robot reached 
at maximum possible accumulated rewards, 2000, within 
400 episodes. The curve with the α value of 0.7 is less 

(1)Q(s, at) ← Q(s, at)+ α(r + γmaxQ(st+1, a))

Fig. 1  Simple block diagram of the model

Fig. 2  Gazebo model

Fig. 3  Controller block diagram
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stable compared to that of 0.8. However, The curve with 
the α value of 0.65 never achieved the maximum accu-
mulated reward (Additional file 4).

Deep Q network (DQN)
Mnih et  al. [9] first used Deep Learning as a variant of 
Q Learning algorithm to play six games of Atari 2600, 
which outperformed all other previous algorithms. In 
their paper, two unique approaches were used.

•	 Experience Replay
•	 Derivation of Q Values in one forward pass (Addi-

tional file 5).

Experience replay
The technique of Experience Replay, experiences of an 
agent, i.e., (state, reward, action, statenew) are stored over 
many episodes. In the learning period, after each epi-
sode, random batches of data from experience are used 
to update the model [9]. According to the paper, there are 
several benefits to such an approach (Additional file  6). 
They are-

•	 It allows greater data efficiency as each step of expe-
rience can be used in many weight updates

•	 Randomizing batches break correlations between 
samples

•	 Behaviour distribution is averaged over many of its 
previous states.

Fig. 4  Rewards for different α
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Derivation of Q values in one forward pass
In the classical Q learning approach, one has to give state 
and action as an input resulting in Q value for that state 
and action. Replicating this approach in Neural Net-
work is problematic as one has to give state and action 
for each possible action of the agent to the Model (Addi-
tional file  7). It will lead to many forward passes in the 
same model. Instead, they designed the model in such 
a way that it will predict Q values for each action for a 
given state. As a result, only one forward pass is required. 
Figure  5 shows a sample architecture for one state with 
two actions

Implementation on the robot model
The implementation of the DQN on our Robot model 
is similar to Q Learning Method. However, there are 
some exceptions. At first, a model was initialized 
instead of Initializing Q matrix. In the ǫ greedy policy, 
instead of choosing the action based on policy π , Q val-
ues were calculated according to the model. At the end 
of every episode, the model was trained using random 
mini batches of experience. At first, an architecture 
with two hidden Relu layers of 20 units was selected 
whereas the last layer was a Linear Dense layer with 
ten units. With the γ of 0.999 and α of (0.65, 0.7, 0.8) . 
Algorithm 2 shows the DQN algorithm as implemented 
on the robot model.

Fig. 5  Sample deep Q network architecture
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Architecture
The architecture of the model is simple. It is a Multi-layer 
perceptron network, with two hidden layers of 40 nodes. 
the last layer is of 10 output nodes. The activation func-
tion we used in every hidden layer is Rectified Linear 
Unit. The last layer has linear activation function (Fig. 6).

Training
From Fig. 7, we see that the total rewards for α (0.65) are 
significantly higher. It starts approximately from 1750 
and reaches the maximum total rewards, 2000 within 
the 200th episode. However, the accumulated rewards 
with α values of 0.7and 0.8 are meager. They have accrued 
rewards approximately 50–60 for the whole time. Later, 
the architecture was changed to 2 hidden layers of 40 
Relu Units where the value of γ was selected to be 0.9. 
Figure  8 shows that both curves reached the highest 
accumulated rewards within 200 episodes in the new 
configuration.

Comparison to traditional methods
In our previous paper, [1], we evaluated the performance 
of PID, Fuzzy Logic and LQR on a self-balancing robot 
model and compared among those controllers. Figure  9 
shows the performance curves for PID, Fuzzy P, LQR and 
DQN. It shows that LQR and Fuzzy controllers were not 
so stable like PID, although we had to tune all of them 
manually. The DQN performance curves are more sta-
ble than fuzzy P and LQR.But less stable than PID. There 
are two reasons behind being less stable can be, that the 
PID algorithm is giving continuous action values, while 
our architecture is designed for discrete values. The sec-
ond reason is the reward function for this architecture is 
to limit the pitch angle between − 5° and 5°. Narrowing 
down that range will help the architecture to perform 
better (Additional file 8).

Conclusion and future work
The implementation of Q Learning and Deep Q Network 
as a controller in the Gazebo Robot Model was shown 
in this paper. It showed the details of the algorithms. 

Fig. 6  Schematic diagram of DQN architecture used

Fig. 7  Rewards for three different α s with γ 0.999

Fig. 8  Rewards versus episodes for new architecture

Fig. 9  Performance curve for PID, fuzzy logic and LQR
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However, some further improvements can be made. Like, 
It was assumed that the robot would work on Marko-
vian State space, which generally not the case. In gen-
eral, Inverted pendulum models are Non-markovian 
models. So there must exist some dependencies among 
the states. So In future, Recurrent Neural Network has 
a great possibility. Moreover, ten predefined values of 
velocities for action were used. In the real world applica-
tion, action values have continuous range. So for more 
complex models, this method may not work. In that case, 
deep reinforcement learning algorithms with continuous 
action space like Actor-Critic Reinforcement Learning 
algorithm [10] can be used. Finally, this work should be 
improved toward real-world scenarios.

Additional file

Additional file 1. PID1:Performance Values of PID with Kp 100, Ki 0.5, Kd 
0.1.

Additional file 2. FuzzyPD: Performance Values of Fuzzy PD control system.

Additional file 3. FuzzyPD+I: Performance Values of Fuzzy PD+ I control 
system.

Additional file 4. LQ1R1: Performance values of LQR control system with Q 
10 and R 100.

Additional file 5. LQ2R2: Performance values of LQR control system with Q 
100 and R 1000.

Additional file 6. PID2: Performance values of PID control system Kp 50, Ki 
0.8 and kd 0.05.

Additional file 7. PID3: Performance values of PID control system Kp 25, Ki 
0.8 and kd 0.1.

Additional file 8. P1: Performance values of P control system Kp 50000.
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