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Route bundling in polygonal domains 
using Differential Evolution
Victor Parque1,2*  , Satoshi Miura1 and Tomoyuki Miyashita1

Abstract 

Route bundling implies compounding multiple routes in a way that anchoring points at intermediate locations mini-
mize a global distance metric to obtain a tree-like structure where the roots of the tree (anchoring points) serve as 
coordinating locus for the joint transport of information, goods and people. Route bundling is a relevant conceptual 
construct in a number of path-planning scenarios where the resources and means of transport are scarce/expensive, 
or where the environments are inherently hard to navigate due to limited space. In this paper we propose a method 
for searching optimal route bundles based on a self-adaptive class of Differential Evolution using a convex representa-
tion. Rigorous computational experiments in scenarios with and without convex obstacles show the feasibility and 
efficiency of our approach.
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Background
In this paper we tackle the route bundling problem which 
consists of compounding multiple routes in a way that 
intermediate points minimize a global distance metric 
of multiple origin–destinations pairs. In this context, the 
ultimate goal in route bundling is to construct tree-like 
graph structures where the anchoring points, being roots 
of the tree structure, serve as coordinating locus for the 
joint transport of information, goods and people.

A fundamental problem behind the construction of 
route bundles lies in deciding the locations of roots and 
intermediate nodes to form the optimal tree structures. 
Also, the presence of obstacles makes the problem non-
trivial due to the non-convexity of the search space, thus 
being hard to deal with analytical and statistical methods. 
In order to exemplify the conceptual framework involved 
in route bundling, Fig. 1a shows a bipartite graph which 
denotes transport needs between origin–destination 
pairs (which is normally known a priori). Here, nodes 
of the bipartite graph denote locations for origin and 
destination, while edges denote needs for  transport/

communication. Figure  1b shows the bundled route 
which represents the tree structure aiming at minimiz-
ing the global distance metric while avoiding obstacle 
collision. Here, note that anchoring points are located at 
some intermediate region of the origin–destination pairs.

Application background
Compared to the path-planning problem with single ori-
gin–destination nodes, the route bundling problem is a 
generalized formulation in the sense that the latter con-
siders multiple origin–destination pairs. Naturally, in 
path planning with single origin–destination pairs, the 
anchoring point (root of minimal tree) coincides with the 
origin–destination nodes. In the literature, the path plan-
ning is a well-studied topic [1–6]; yet, the route bundling 
problem is an emergent research topic having potential 
applications in problem scenarios involving compounded 
path planning with multiple origin–destination pairs. 
Here, designing the optimal network is relevant for the 
efficient use of resources while integrating and coordinat-
ing transport/communication needs.

Concretely speaking, route bundling has specific appli-
cations in environments where resources or means of 
transport/communication are scarce or expensive. For 
instance, consider the design of a network for transport-
ing goods from/to multiple areas in an environment 
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covered with obstacles; naturally, since one-to-one trans-
port would cause unwanted traffic or excessive cost in 
network construction, one is interested in designing a 
network where intermediate nodes serve as coordinating 
locus for source/destination locations.

Also, consider the design of optimal wire harness 
topologies for machines (e.g., cars and ships). Here, 
free space for electrical wiring is scarce and one-to-one 
links are rather undesirable; thus, wire harness becomes 
essential to build tree-like structures aiming to minimize 
global connectivity while ensuring minimal use of space.

Furthermore, consider the deployment of sensor net-
works for many-to-many robots in the presence of 
attenuating obstacles (e.g., disaster areas). Here, attenuat-
ing obstacles induce in data loss or deterioration of the 
ability to communicate (e.g., concrete floors, steel rein-
forced floors, ceilings, elevators, walls, rock, and rein-
forced materials). Thus, it becomes imperative to design 
networks allowing to get the sensor signal around the 
obstructing materials. In disaster areas, route bundling 
becomes the building block to enable energy-efficient 
networks.

Generally speaking, the presence of obstacles and holes 
in the environment induces on limited space and naviga-
bility, thus making route bundling relevant when either 
transport and communication means are scarce and 
expensive, or when optimal networking is a goal in many-
to-many origin–destination settings.

Related works
Basically, the algorithmic foundations of the route bun-
dling have been laid out in two different fields: wireless 
sensor networks and network visualization.

In one hand, the study of wireless sensor networks 
[7] has rendered methodologies for network proto-
col and topology construction. Examples include the 

construction of a connected network to ensure com-
plete coverage of an area of interest with the minimum 
number of nodes as possible [8], the degree-constrained 
minimum-weight connected dominated set for energy-
efficient topology control in wireless sensor networks [9], 
the topological optimization for consensus-based clock 
synchronization protocols [10], the tree topology con-
struction for heterogeneous wireless sensor networks 
[11], the self-stabilizing algorithms to construct rooted 
trees under the assumption of node disconnection [12] 
and a number of topology optimization for network cov-
erage, connectivity, energy savings, delay minimization, 
optimal routing and broadcasting [13–17].

In other domains, the route bundling problem has its 
closest foundations in edge bundling for network visuali-
zation field. Here, the basic aim is to compound edges in 
complex networks to ease the visualization or rendering 
of large-scale networks. In particular, the conventional 
works have focused on the geometry-based edge clus-
tering, in which the edges in the graph are forced to pass 
through points in a control mesh [18]. Also, the force-
based edge bundling where edges are modeled as springs 
being able to attract to each other [19, 20]. Furthermore, 
hierarchical clustering approaches have emerged. Here, 
in [21], the authors describe an approach based on attrac-
tion to the skeleton of the adjacent edges. And, in [22], 
the authors describe a kd-tree-based optimization of the 
centroid points of close edges in the graph.

Our contribution
Although the above described algorithms for topology 
optimization in wireless sensor networks aim at finding 
an optimal hierarchy given a number of nodes, the exist-
ing algorithms are irrelevant to our scope since route 
bundling does not require centralized communication 
and compliance with network coverage (e.g., hoping 
diameter).

On the other hand, existing algorithms for edge bun-
dling have a different scope: network bundles aim at ren-
dering aesthetically pleasing and topologically compact 
drawings; yet, the existing algorithms do not necessarily 
aim at minimizing a global distance metric. Furthermore, 
it is non-trivial for the existing edge bundling algorithms 
to obtain minimal-length networks in the presence of 
obstacles and holes in the environment.

Thus, in order to fill the above gaps, and having a dif-
ferent scope, we focus on the problem of designing opti-
mal route bundles. In order to tackle this problem, we 
use Differential Evolution embedded with a convex rep-
resentation of the search space (free region) to optimize 
route planning and bundling in polygonal domains. The 
basic idea of our approach is to search over the space of 
a convex representation of a polygonal map by sampling 

Fig. 1  Basic idea of route bundling. Given a polygonal map and 
edges representing desirable origin–destination pairs, the goal is 
to find optimal anchoring points minimizing the global distance 
metric of the bundled route. a Bipartite graph and obstacles, b route 
bundling
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with self-adaptive interpolation vectors. Here, the unique 
point of our approach is to balance the explorative and 
exploitative sampling of anchoring points while explicitly 
avoiding the computations of point inside polygons. Our 
contributions are summarized as follows:

• • 	 We propose a nature-inspired algorithm for searching 
tree bundles aiming at minimizing global length in a 
polygonal domain. In our approach, we use Differen-
tial Evolution and study the performance of our pro-
posed algorithmic variants including the following:

–– DENC, Differential Evolution with Neighborhood 
and Convex Representation.

–  – DEN, Differential Evolution with Neighborhood.
–  – DEC, Differential Evolution with Convex Represen-

tation.
–– DE, Differential Evolution without Neighborhood 

nor Convex Representation.

• • We perform more than 12,000 experimental evalua-
tions to confirm the feasibility, efficiency and robust-
ness of our approach by considering diverse number 
of edges in the input bipartite network, diverse com-
plexity configurations of polygonal obstacles with 
convex and non-convex geometry (number of edges 
in polygon up to 10), and parametric comparisons 
considering population size and neighborhood size. 
Furthermore, we compare the convergence perfor-
mance of the above described algorithmic variants. 
Based on these computational experiments, we pro-
vide insights on how to design optimal tree bundles 
by using our nature-inspired approach.

In the rest of the paper, we describe our framework in 
“Methods” section, and then we describe our results and 
provide insights from our computational experiments in 
“Computational experiments” section, and finally con-
clude our paper in “Conclusions” section.

Methods
This section describes the basic ideas as well as the algo-
rithmic foundations in our proposed approach for route 
bundling.

Basic framework
The basic concept of our proposed approach is depicted 
by the following equation:

(1)
Minimize

x
F(x)

subject to x ∈ T

where x is the encoding (representation) of the route bun-
dle, F(x) is the distance metric which is used to evaluate 
the quality/fitness of the bundled routes, and T is the 
search space of feasible route bundles.

In the above definition, the encoding implicitly repre-
sents a tree structure whose edges are free of overlaps 
with obstacles.

Algorithm 1 Route Bundling Algorithm
1: procedure Route Bundling(G,M,E)

2: T ← DelaunayTriangulation(E −M)

3: x ← DifferentialEvolution(T )

4: return anchoring point (P, Q)

5: end procedure

Also, note that the constraint x ∈ T makes explicit 
the requirement that optimization is realized within the 
space T of feasible route bundles. In latter sections, we 
describe the representation which allows sampling of fea-
sible route bundles.

Then, in order to solve the above problem, a set of 
explicit a priori knowledge is considered fundamental. In 
our study, we assume to have knowledge of the following 
elements (as shown by Fig. 2):

• • Definition of a bipartite graph G = (V ,E) wherein 
the edge e ∈ E represents the origin–destination pair 
(implying needs for communication/transportation 
between two points). Here, the number of edges and 
the locations of the source–destination pairs in the 
graph G are defined by the characteristics of the envi-
ronment and/or by the needs of the user or network 
designer.

• • Definition of locations and geometry of the obstacles 
in the environment (which denote unfeasible areas 
for navigation/transportation). For simplicity and 
without loss of generality, we use polygonal obstacles 
with/without convexity properties which are remi-
niscent of indoor environments.

In order to give a glimpse of the algorithmic flow in our 
proposed approach, Fig.  2 and Algorithm  1 show the 
basic steps for route bundling. Basically, our approach 
consists as follows:
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• • First, the geometry of the free space is computed 
given information of the set of obstacles (map) and 
bipartite network.

• • Then, the free space is triangulated using the Delau-
nay approach.

• • Finally, the locations of the anchoring points are opti-
mized within the triangulated free space. Here, dur-
ing optimization, fitness is defined by the distance 
metric F(x).

In the following, we describe the fundamental concepts 
involved in our approach: (1) the encoding (representa-
tion) of bundled routes, (2) the distance metric, as well as 
(3) the optimization method to solve Eq. (1).

Representation of bundled routes
This subsection describes the mechanism used to repre-
sent bundled routes.

Given a bipartite graph G = (V ,E) with edges represent-
ing origin–destination pairs, the reader may note that a 
bundled route can be easily represented by the coordinates 
of a pair of anchoring points connecting all origins and 
destinations, as Fig. 1 shows. By using this concept, when-
ever the coordinates of the vertices v ∈ V  of the bipartite 
graph G are presented in R2, then the route bundling can 
be easily represented by the following 4-element tuple:

where Px and Py are the coordinates in the x-axis and 
y-axis, respectively, in which the anchoring point nearest 
to the origins is located at (Px,Py), and the anchoring point 
nearest to the destination is located at (Qx,Qy). The reader 
may easily note that x ∈ R

4 holds.
The above representation is simple; yet, it has a fun-

damental problem: it is unable to encode feasible 

(2)x = (Px,Py,Qx,Qy)

route bundles since the condition P,Q ∈ R
2, implying 

P = (Px,Py) and Q = (Qx,Qy), does not ensure that coor-
dinates are outside the non-navigable space (overlapping 
with obstacles).

In order to tackle the above problem, we propose repre-
senting the coordinates of the anchoring points by using 
only the navigable free space. The basic concept is as follows.

• • 	 The free space of the polygonal map is triangulated 
using the Delaunay approach [23], as Fig. 2 exemplifies, 
in which a set T = {t1, t2, . . . , ti, . . . , tn} of n triangles 
are obtained.

• • 	 Then, the anchoring points can be represented by 3-ele-
ment tuples, as follows: 

 where i ∈ [n] and r1, r2 ∈ [0, 1]. In the above encoding, i 
is the index of the i-th triangle ti ∈ T , and r1, r2 are real 
numbers in the interval [0, 1].

The unique feature of the above encoding lies in the abil-
ity to represent arbitrary points in R2 which guarantee to 
be inside the (free) navigable space. Note that the follow-
ing relation holds:

Furthermore, for a polygonal map in 2-D, the equivalent 
cartesian coordinates can be computed by using the fol-
lowing relation [24]:

where Ai,Bi,Ci are the 2-dimensional coordinates of the 
vertices of the i-th triangle ti ∈ T . Intuitively, r1 repre-
sents the percentage from vertex Ai to the opposing edge 

(3)P = (i, r1, r2)

P ∈ N
[n] × R

[0,1] × R
[0,1]

(4)(Px,Py) = (1− r1)Ai +
√
r1(1− r2)Bi +

√
r1r2Ci

Fig. 2  Basic steps in the proposed approach. Inputs consist of a polygonal map and a bipartite network, wherein edges of the bipartite network 
represent desirable source–destination pairs. The output is a tree-like network with anchoring points at intermediate points optimizing a global 
distance metric
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in the triangle ti ∈ T . The square root of r1 has the role 
of considering a uniform random point with respect to 
the triangle area. Although it is possible to use the sim-
ple barycentric interpolation, the above representation 
has the added benefit of enabling the uniform sampling 
of arbitrary points.

Then, for a route bundle with two connected anchoring 
points P and Q, in which P connects to the origin nodes, 
and Q connects to the destination nodes (see Fig. 2 for a 
basic reference), it is possible to use Eq. 3, to deduce an 
encoding for route bundles by using a 6-element tuple, as 
follows:

where iP , iQ are natural numbers in the interval [n], and 
rP1 , r

P
2 , r

Q
1 , r

Q
2  are real numbers in the interval [0, 1]. Basi-

cally, the above expression has the role of representing 
two coordinates in the plane, and for simplicity, we denote 
the search space x ∈ T, wherein the following holds:

Thus, by using a triangulation of the free space and the 
relations of Eqs. (3)–(5), it becomes possible to sample 
arbitrary points uniformly in the convex search space T. 
Intuitively, the above representation allows to render fea-
sible route bundles efficiently since,

• • 	 Bijection to Cartesian coordinates is possible in O(1) by 
using Eq. 4.

• • 	 Route bundles are guaranteed to avoid overlaps with 
obstacles, and

• • 	 Explicit computation of point inside polygon is 
avoided, implying the efficiency in scalability while 
sampling a very large number of points in the free 
navigable space.

Cost function
In this subsection, we describe the distance metric used 
to measure the quality/fitness of route bundles.

Once the search space x ∈ T is constructed, our next 
goal is to find anchoring points P and Q (as shown by 
Fig.  2) which minimize a distance metric. For simplic-
ity and without loss of generality, we use the following 
metric:

where d(a, b) is the Euclidean obstacle-free shortest dis-
tance metric between points a and b, eo is the coordinate 
of the origin node of the edge e ∈ E, ed is the coordinate 
of the destination node of the edge e ∈ E, and P and Q are 

(5)x = (iP , rP1 , r
P
2 , i

Q, r
Q
1 , r

Q
2 )

T ≡N
[n] × R

[0,1] × R
[0,1] × N

[n] × R
[0,1] × R

[0,1]

(6)F(x) =
∑

e∈E
d(eo,P)+ d(P,Q)+

∑

e∈E
d(Q, ed)

anchoring points being closer to the origin eo and desti-
nation ed, respectively.

Intuitively, the above cost function represents the 
euclidean distance between three different groups:

• • the distance of the shortest paths between origin 
nodes to anchoring point P,

• • the distance of the shortest paths between the 
anchoring points P and Q, and

• • the distance of the shortest paths between the 
anchoring points and the destination nodes.

The shortest paths are computed by using A* search [3] 
and the visibility trace, which is pre-computed from the 
Delaunay triangulation.

Note that the 2-dimensional coordinates of the anchor-
ing points P and Q can be computed by combining Eqs. 
(3)–(5), as follows:

where AP
i ,B

P
i ,C

P
i  are the 2-dimensional coordinates of 

the vertices of the i-th triangle ti ∈ T  where point P lies 
in.

Further extensions are possible. For example, instead 
of using the above euclidean metric, it is possible to use 
Manhattan distance (useful for designing networks for 
integrated circuits and tubular networks inside build-
ings). Also, it is possible to include weights in the above 
metric to balance the relevance of the distance to the ori-
gins compared to the distance to destinations.

Differential Evolution
This subsection describes the optimization algorithm 
used to compute the optimal route bundles.

We use Differential Evolution [25, 26] considering 
global and local interpolation vectors in order to tackle 
the problem of dealing with multimodal search space (the 
reader may note that Eq. 6 is multimodal in the case of 
polygonal maps with non-convex obstacles).

Concretely speaking, the method for sampling in 
the above mechanism is described by the following 
equations:

where

(7)
(Px,Py) = (1− rP1 )A

P
i +

√

rP1 (1− rP2 )B
P
i +

√

rP1 r
P
2C

P
i

(8)
(Qx,Qy) = (1− r

Q
1 )A

Q
i +

√

r
Q
1 (1− r

Q
2 )B

Q
i +

√

r
Q
1 r

Q
2 C

Q
i

(9)xt+1 =
{

ut F(ut) ≤ F(xt)
xt otherwise
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• • xt represents Eq. 5 at iteration t, in other words xt is 
the individual (route bundle),

• • F(.) is the objective function at Eq. (6) (minimiza-
tion), and

• • ut is the trial route bundle solution at iteration t.

In the above definition, sampling of new points is realized 
when the trial vector ut minimizes or achieves equal per-
formance compared to the current state.

The trial vector ut is computed from the interpolation 
of two vectors, as follows:

• • ◦ is the Hadamard product (element-wise).
• • xc is the crossover individual at iteration t.
• • vt is the mutant individual at iteration t.
• • mt is a vector of masks containing zeros and ones.

The mask mt is computed as follows:

where

• • ◦ is the Hadamard product (element-wise).
• • rt,j and jrand are random numbers uniformly distrib-

uted in R[0,1] and N[D] respectively.
• • CR is the probability of crossover.
• • D = 6 is the dimensionality of the route bundling 

problem, Eq. (5).

In the above definitions, the user may note that high val-
ues of the crossover rate CR incite higher number of ones 
in the mask vector mt, thus a highly explorative behavior 
of the search space.

The global and local interpolation vectors are com-
puted as follows:

where

• • gt is the global donor individual.
• • lt is the local donor individual.

(10)ut = xct +mt ◦ (vt − xct )

(11)mt =[mt,1,mt,2,mt,3, . . . ,mt,D]

(12)mt,j =
{

1, rt,j ≤ CR or j = jrand
0, otherwise

(13)vt =wxt .gt + (1− wxt ).lt

(14)gt = xt + α(xgbest − xt)+ β(x1 − x2)

(15)lt = xt + α(xnbestx − xt)+ β(xp − xq)

(16)wxt =wxt + α(wgbest − wxt )+ β(w1 − w2)

• • {x1t , x2t } ⊂ P, are random individuals sampled from P 
for x1 �= x2 �= xt.

• • xgbest is the global best in the population at iteration t.
• • xnbestx is the local best in the neighborhood N(xt) of 

individual xt at iteration t.
• • the neighborhood N(xt) of vector xt is the set of indi-

viduals contiguous to xt by radius ρ = |P|.η
2  in a ring 

topology (see Fig.  3 for a ring topology with radius 
ρ = 2).

• • {xp, xq} ⊂ N(xt), are random individuals for 
xp �= xq �= xt.

• • wxt denotes the coefficient of individual xt, in which 
any coefficient wxt ∈ U [0, 1] is set randomly at initial 
iteration.

• • wgbest is the coefficient associated to xgbest,
• • w1,w2 are the coefficients associated to the vectors 
x1, x2 respectively.

Note that in the above definitions, Differential Evolu-
tion uses global and local interpolation vectors gt and 
lt , respectively; in which the mutant vector vt is a linear 
interpolation between gt and lt.

The global (local) interpolation vector gt (lt) represents the 
position to which the direction of the trial vector should aim 
at in the 6-dimensional search space, considering informa-
tion from the population (neighborhood). Thus, the global 
(local) interpolation vector is the result of the current solu-
tion being translated by a sum of two directional vectors, 
one vector representing the direction to the best solution in 
the population (neighborhood) and another vector repre-
senting an arbitrary direction computed from the difference 
of two solutions within the population (neighborhood).

The first perturbation vector (the one multiplying α) is 
an arithmetical recombination operator, while the second 
perturbation vector (the one multiplying β) is a differen-
tial mutation. The parameters α and β have a scaling role 
toward best and arbitrary directions, respectively. A priori 
knowledge of problem convexity, uni-modality or multi-
modality eases the selection of good values of α and β. Uni-
modal and convex (multimodal and non-convex) fitness 

Fig. 3  Neighborhood of xt for ρ = 2 in a ring topology. Spheres 
denote individuals
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landscapes would favor values of α (β) being larger than 
β (α) to induce in an exploitative (explorative) behavior in 
both the global and local neighborhood, and to ease the 
faster convergence. Without a-prior knowledge of the fit-
ness landscape, it is recommendable to use α,β ∈ (0, 2) to 
avoid overshooting while sampling in the search space [25, 
26]. Furthermore, note that when α = β and w = 1, the 
above Differential Evolution is equivalent to the conven-
tional DE/target-to-best/1 strategy [26]; thus, the above 
algorithm is a generalization in which it considers not only 
the global population, but also the local neighborhood.

In computing the local neighborhood we use the ring 
topology to ensure speciation of individuals while preserv-
ing efficiency in the computation of best individuals in the 
neighborhood. An alternative approach is to use a cluster-
ing approach in which the neighborhood is defined as a 
local cluster. Yet, compared to the clustering approach, the 
ring topology is more efficient since computing the best 
individuals in the neighborhood takes O(P), while the clus-
tering approach takes O(P2) for P being the population size.

Finally, the use of Differential Evolution with global and 
local interpolation vectors is advantageous to balance 
both exploration and exploitation over the entire search 
space x ∈ T, wherein the trade-off between the global and 
the local search is self-adapted throughout the iterations.

Computational experiments
This section discusses our experimental results as well 
as obtained insights after evaluating the performance of 
our proposed method by using exhaustive computational 
experiments in diverse polygonal maps with both convex 
and non-convex topology.

Settings
Our computing environment was Intel i7-4930K @ 
3.4GHz, MATLAB 2016a.

Table 1 shows the key parameters of Differential Evolu-
tion such as the probability of crossover CR and the scal-
ing factors α and β.

The reason of using a crossover probability CR = 0.5 
is to give equal importance to the search directions 
obtained from historical search, and those obtained con-
sidering local and global interpolations.

Also, without a priori knowledge of problem convexity, 
uni-modality or multi-modality of the route bundling prob-
lem, we choose conservative values of α and β to induce 

smooth balance of exploitation and exploration in both 
the global and local neighborhood; thus, the scaling fac-

tor, α = β =
∣

∣

∣

ln(U(0, 1))

2

∣

∣

∣
, allows to search in small steps 

when computing the global, the local and the self-adaptive 
directions.

Experimental scenarios
In order to enable a meaningful evaluation of our pro-
posed approach, we consider the following environmen-
tal scenarios:
In order to give a glimpse of the type of polygonal maps 
used in our study, Figs. 4 and 5 show the topology of the 
bipartite network and the polygonal maps. Note that 
these domains are organized in a grid in which the hori-
zontal (vertical) axis portrays, in ascending order from 
left (bottom) to right (top), the number of routes (poly-
gons) involved in route bundling.

The main reason of using values of the number of edges 
|E| up to 25 is due to our interest in evaluating the perfor-
mance in scenarios reminiscent to indoor environments, 
where the complexity of the environment is controlled by 
the following elements:

• • the number of obstacles in the polygonal map, and/or
• • the number of sides for each obstacle.

Thus, complex polygonal domains induce in large num-
ber of triangles, edges and vertices in the visibility graph, 
thus representing a challenging search space for any 
path-planning algorithm. Our future work aims at using 
configurations considering large scenarios and being 
close to outdoor environments.

Furthermore, we considered the following:

• • For each combination of the above, 15 independent 
experiments were performed to solve Eq. 1 by using 
the optimization algorithm in Eq. 9, and

• • For each independent experiment, the maximum 
number of functions evaluations is set as 104 with 
initial solutions of route bundles xo ∈ T being initial-
ized randomly and independently.

The above is due to our interest in avoiding random 
bias/luck, and evaluating the efficiency of the proposed 
method under restrictive computational budget.

As a result of the above considerations, 12,000 experi-
mental conditions were evaluated,1 and 11,250,000,000 
function evaluations were performed.2

1 
5× 5× 2× 4× 4× 15.

2  considering population size, number of independent runs, number of 
max. evaluations for all experimental conditions.

Table 1  Parameters in Differential Evolution

Parameter Symbol Value

Probability of Crossover CR 0.5

Scaling factor α,β
∣

∣

∣

ln(U(0,1))
2

∣

∣

∣



Page 8 of 19Parque et al. Robot. Biomim.  (2017) 4:22 

Convergence
In order to show the kind of tree structures obtained 
in the route bundling process, Figs.  6 and 7 show the 
obtained route bundles in polygonal domains with obsta-
cles of 5 and 10 sides, respectively. In order to show the 
efficiency of the proposed method, Figs. 8 and 9 show the 
convergence characteristics. Note that these figures are 
arranged in a grid in which the horizontal axis shows the 
number of edges |E| in the bipartite graph, and the verti-
cal axis shows the number of obstacles in the polygonal 
map. In these figures, for the sake of simplicity, the values 
of P = 25 and η = 0.2 are used; other values as denoted 
in Table 2 are discussed in subsequent sections.

In regard to the obtained route bundles, we can con-
firm the following facts:

• • Regardless of the configuration of the polygonal map 
and the structure of the bipartite graph, it is possible 

to generate tree structures representing the bundled 
routes which aim at minimizing the global distance 
metric.

• • The location of the anchoring points of the bundled 
routes is close to, but not necessarily at, the center of 
the origin and destination pairs of the bipartite graph.

• • The route between the anchoring points of the bun-
dled routes is not necessarily a straight line, and, 
regardless of increasing the number of edges in the 
bipartite graph, the routes between the anchoring 
points and the topologies of route bundles are struc-
turally similar, but not equivalent. This is due to the 
fact of having edges with close origin–destination 
pairs.

The above observations has important implications to 
extend our proposed method in the following ways:

Fig. 4  Bipartite network and polygonal map with 5 sides
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• • instead of using arbitrary initial solutions in the opti-
mization algorithm, it may be possible to compute 
the initial solutions of x which are close to the center/
centroid of the origin and destination pairs, and

• • it may be possible to use pre-computed routes 
between the anchoring points as initial solu-
tions whenever the number of edges is expected to 
increase, since these routes are expected to be struc-
turally similar.

The above are foundational insights to enable even faster 
convergence to the optimal solutions.

Furthermore, in regard to the convergence behavior of 
the Differential Evolution algorithm, Figs. 8 and  9 show 
the convergence behavior of the optimization algorithm 
over 15 independent runs. By observing these figures, it 
is possible to confirm the following facts:

• • Regardless of the configuration of the polygonal maps 
and the structure of bipartite graphs, it is possible to 
converge to the bundled routes minimizing a global 
distance metric within 1000 function evaluations and 
15 independent runs.

• • Increasing the number of edges has a natural effect 
on increasing the distance metric by some small fac-
tor smaller than 1. This observation is in line with our 
above insights on the structural similarity of route 
bundles when increasing the number of edges.

• • The convergence behavior of each simulation is dif-
ferent due to the heuristic nature of solution sam-
pling in Differential Evolution, and the independent 
arbitrary initialization at each independent run. Note 
that it is imperative to use different arbitrary initiali-
zations in order to evaluate our approach exhaus-
tively under diverse initialization conditions.

Fig. 5  Bipartite network and polygonal map with 10 sides
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The above results imply the feasibility and efficiency to 
obtain optimal route bundles in polygonal maps with 
both convex and non-convex obstacles.

It is important to note that since obtaining a math-
ematical proof of convergence is unfeasible due to the 
heuristic nature of Differential Evolution, we argue that 
our converged results are approximations to the true 
global optima. Yet, our study is able to provide insights 
when Differential Evolution is used to tackle the route 
bundling problem under complex environments and 
diverse initialization conditions. Studying the theoretical 
convergence under non-heuristic algorithmic schemes is 
in our future agenda.

Furthermore, in order to show the convergence at finer 
scale under different number of obstacles, routes, com-
plexity of map, population size and neighborhood ratio, 
Figs. 10 and  11 show the required number of evaluations 
to achieve convergence. In these figures, the achievement 
of convergence is computed from the comparison of (1) 

the average difference of the cost function within 5 units 
of the convergence time series, to (2) the tolerance for 
convergence, which is a user-defined value rather than an 
optimization variable since it depends on the granularity 
of the polygonal map (maps requiring higher granularity 
imply finer and lower values of convergence tolerance).

In Figs. 10 and 11, for each number of routes and num-
ber of obstacles in the map, the heatmaps represent the 
number of evaluations required to achieve convergence 
for route bundling. Here, for each heatmap, darker colors 
imply large number of evaluations (max. number of eval-
uations is provided in the right side of each heatmap). 
Also, the x-axis of each heatmap represents the popula-
tion size |P| = {25, 50, 100, 200} in Differential Evolu-
tion, whereas the y-axis of each heatmap denotes the 
neighborhood scaling factor η ∈ {0.1, 0.2, 0.4, 0.8}. Heat-
maps are arranged in a 2-dimensional grid, in which the 
horizontal axis of the grid denotes the number of edges 
|E| ∈ {5, 10, 15, 20, 25} in the input bipartite network, 

Fig. 6  Route bundles in polygonal domains of S = 5 sides
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and the vertical axis of the grid denotes the number of 
obstacles in the map ∈ {1, 2, 3, 4, 5}. By this arrangement, 
heatmaps located at bottom/left grid imply simple route 
bundling scenarios, while heatmaps located at the top/
right imply complex scenarios.

Then, by looking the results of Figs.  10 and   11, we 
observe that our proposed approach achieves faster 
convergence when using smaller populations (|P| = 25 ) 
in most of the cases. We believe this is due to the fact 
of using a convex representation and a ring topology in 
Differential Evolution: whereas the convex representa-
tion helps sampling and evaluating unique solutions 
in the search space, the ring topology helps exploring 
the search space in areas close to the sampled solution. 
Thus, large populations or large neighborhood size has a 
detriment effect in widening the sampling space, which 
implies increasing the computational budget, and thus 
the required number of function evaluations to achieve 
convergence.

Population and neighborhood size
Based on the above observations, the reader may wonder: 
what are good values of population size |P| and neigh-
borhood scaling factor η? In order to answer this ques-
tion, Fig. 12 shows the histogram of (|P|, η) for the fastest 
converged values. In this figure, the x-axis of the histo-
gram denotes the population size |P| and the y-axis of the 
histogram denotes the neighborhood ratio η. The histo-
grams are based on the number of times in which the 
tuple (|P|, η) achieved the smallest number of evaluations 
to achieve convergence. By observing Fig. 12, and in line 
of the above observations, for any value of evaluated tol-
erance for convergence in {1, 10−1, 10−2, 10−3} , smaller 
populations are always beneficial. In regard to the neigh-
borhood size, for convergence tolerances being 10−1 or 
10−2, the neighborhood scaling factor η = 0.2 is always 
beneficial, whereas for convergence tolerances being 
10−3, the neighborhood scaling factor η = 0.8 is benefi-
cial. These observations occur due to the fact of smaller 

Fig. 7  Route bundles in polygonal domains of S = 10 sides
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tolerances implying the need to explore the search space 
at finer scale, thus higher neighborhood scaling factor η 
enables the effective sampling of the search space without 
the need to increase population size (which would induce 
in unwanted space memory overhead). These results 
show that our proposed approach performs the heuristic 
search efficiently by using small populations.

Algorithmic variants
The use of neighborhood and convex representation in 
Differential Evolution are relevant components in our 
proposed approach. Thus, in order to study the perfor-
mance of these components in our proposed heuristic 
algorithm, we compared the following four variants:

• • DENC: Differential Evolution with Neighborhood 
and Convex Encoding. In this scheme, we use a 
neighborhood with η = 0.2, based on our above 

observations, and the Convex Encoding denoted by 
the 6-dimensional tuple in Eq. 5 (described by “Rep-
resentation of bundled routes” section).

• • DEN: Differential Evolution with Neighborhood 
Only. In this scheme, we use a neighborhood with 
η = 0.2, based on our above observations, and the 
encoding denoted by the 4-dimensional tuple in 
Eq.  2, which is a simple representation yet compu-
tationally more expensive due to the fact of requir-
ing checks of point inside polygon per every sampled 
solution to ensure feasible route bundles (coordinates 
are to be outside of obstacles). In this scenario, the 
cost function is computed as follows: 

(17)F(x) =
{

G(x) P,Q ∈ free space
∞ otherwise

(18)G(x) =
∑

e∈E
d(eo,P)+ d(P,Q)+

∑

e∈E
d(Q, ed)

Fig. 8  Convergence in polygonal domains of S = 5 sides
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where d(a, b) is the Euclidean obstacle-free shortest 
distance metric between points a and b, eo is the Car-
tesian coordinate of the origin node of the edge e ∈ E, 
ed is the Cartesian coordinate of the destination node 
of the edge e ∈ E, and P and Q are the Cartesian 
coordinates of anchoring points being closer to the 
origin eo and destination ed, respectively. The condi-
tion P,Q ∈ free space satisfies that both P and Q are 

outside of the polygonal obstacles. Note that in this 
scheme, the Delaunay triangulation is not a require-
ment since all points are in R2.

• • DEC, Differential Evolution with Convex Encod-
ing Only. In this scheme, we use the Convex Encod-
ing denoted by the 6-dimensional tuple in Eq.  5 
(described by “Representation of bundled routes” 
section); yet, we avoid using neighborhood concepts, 
and thus the mutant vector vt (denoted by Eq. 13) is 
computed without the local interpolation vector, as 
follows: 

In the above, we keep the weight to be multiplying 
the global interpolation vector in order to enable 
individual self-adaptation.

• • DE: Differential Evolution without Neighborhood 
nor Convex Encoding. In this scheme, we avoid using 
neighborhood concepts as well as the Convex Encod-

(19)vt = wxt .gt

Table 2  Experimental scenarios

Variables Symbol Values

Edges of bipartite graph |E| {5, 10, 15, 20, 25}

Polygonal obstacles {1, 2, 3, 4, 5}

Sides in obstacles S {5, 10}

Population size |P| {25, 50, 100, 200}

Neighborhood scaling factor η {0.1, 0.2, 0.4, 0.8}

Fig. 9  Convergence in polygonal domains of S = 10 sides
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ing. Therefore, the mutant vector vt is computed by 
Eq. 19, the encoding is depicted by the 4-dimensional 
tuple in Eq. 2, and the cost function is computed by 
Eq. 18.

In the above described variants, we used the popula-
tion size as |P| = 25, based on our above observations 
describing the superiority of smaller populations. All 
other parameters in Differential Evolution are kept con-
stant as described by Table 2.

In order to evaluate and compare the performance of 
the above described variants, Figs.  13 and 14 show the 
comparison of the average convergence behavior over 

15 independent runs up to 2000 evaluations. The con-
vergence figures are arranged in a 2-dimensional grid 
in which the x-axis portrays the number of edges in the 
input bipartite graph, and the y-axis portrays the number 
obstacles in the map. Thus, by looking at Figs. 13 and  14 
we can observe the following facts:

• • In all cases, DENC and DEC have better solutions 
during the initialization phase (when the number of 
evaluations is up to |P| = 25) and the first number of 
evaluations (up to 200 in all cases). This occurs due 
to that fact of DENC and DEC using the convex rep-
resentation which ensures sampling feasible points, 

Fig. 10  Number of evaluations required to achieve convergence in route bundling, in which darker colors imply large number of evaluations. The 
x-axis of each heatmap denotes the population size |P|, whereas the y-axis of each heatmap denotes the neighborhood scaling factor η. Heatmaps 
are arranged in a 2-dimensional grid, in which the horizontal axis of the grid denotes the number of edges |E| in the bipartite network and the verti-
cal axis of the grid denotes the number of obstacles in the map. In this arrangement, heatmaps located at bottom/left (top/right) of the grid imply 
simple (complex) route bundling scenarios
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always. Conversely, DE and DEN require additional 
number of evaluations (and checks of point inside 
polygon) in order to sample and evaluate feasible 
solutions.

• • In all cases, either DENC or DEN has better con-
vergence performance compared to DE. And in 26 
out of 50 cases, DE has issues in stagnation. These 
observations imply that Differential Evolution using 
the interpolation vectors in the global and local 
neighborhood alone, or embedded with the con-
vex representation, is useful not only to allow faster 
convergence, but also to allow escaping from stagna-
tion. This occurs due to the fact of generating feasible 

solutions (by the convex representation), and due to 
the fact of self-balancing between directions toward 
the best in the population, and directions toward the 
best in the local neighborhood.

• • Furthermore, in 10 out of 50 cases, DEC has issues of 
stagnation, which is in line with the above insights. 
Since DEC uses no information of the local neighbor-
hood, sampled solutions will stagnate in directions 
close to the global best. Then, without any explora-
tive factor, DEC is likely to stagnate. Thus, as the 
above observations indicate, the use of neighborhood 
enables to add an explorative factor to avoid stagna-
tion.

Fig. 11  Number of evaluations required to achieve convergence in route bundling, in which darker colors imply large number of evaluations. The 
x-axis of each heatmap denotes the population size |P|, whereas the y-axis of each heatmap denotes the neighborhood scaling factor η. Heatmaps 
are arranged in a 2-dimensional grid, in which the horizontal axis of the grid denotes the number of edges |E| in the bipartite network, and the verti-
cal axis of the grid denotes the number of obstacles in the map. In this arrangement, heatmaps located at bottom/left (top/right) of the grid imply 
simple (complex) route bundling scenarios
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Further computational experiments using large number 
of edges and diverse obstacle configurations reminis-
cent of outdoor environments are in our agenda. Also, 
although the main focus of this paper is environments in 
2D, the extension of 3D is straightforward since:

• • Delaunay triangulation in 3D takes in the worst case 
O(n2), and in the expected case can be even O(n).

• • Differential Evolution can sample in an 8-dimen-
sional tuple (for a convex representation) or 6-dimen-
sional tuple (for a non-convex representation).

• • Path planning in 3D is possible by either geometric 
or point cloud approaches.

Also, we aim at dealing with dynamic environments in 
our future work. A simple extension would consider the 
following principles:

• • Obstacle geometry have minor changes over small 
time intervals, thus, to obtain the next optimal bun-
dle, instead of using arbitrary initialization over the 
entire search space, it is possible to initialize candi-
date solutions with small perturbations to the current 
converged solutions and run Differential Evolution 
over a small number of evaluations. In this way, it 
becomes possible to quickly update the topology of 
the route bundles when changes in obstacle geom-
etry are expected occur.

• • The same strategy can be used whenever the loca-
tions of origin and destination in the bipartite graph 
are expected to occur.

• • In order to realize a fast response time, it is possible 
to use multi-core computing since Differential Evolu-
tion supports parallelization inherently.

Fig. 12  Histogram of (|P|, η) representing the best population size |P| and the best neighborhood scaling factor η for all scenarios. Here, the mean-
ing of best implies the tuple (|P|, η) which achieves the smallest number of evaluations to converge given a tolerance value. a The case when 
convergence is evaluated using Tol = 1. b The case when convergence is evaluated using Tol = 10−1. c The case when convergence is evaluated 
using Tol = 10−2. d The case when convergence is evaluated using Tol = 10−3
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Also, in our agenda remains the use of undirected and 
directed graphs [27, 28], modularity by combinatorial 
groupings of nodes and edges [29, 30] to build trees with 
increased depth (to improve scalability) and its applica-
tion to network design [31, 32]. Furthermore, it remains 
in our agenda the study of changing structures during 
network optimization, and the use of concurrent explo-
ration and exploitation. Last but no least, the extension 
to generate curved and collision-free navigation bundles 
in cluttered environments [33–35] is left for future work. 
Our results offer building blocks to further advance 
toward developing global network optimization with 
convex, flexible and scalable representations.

Conclusions
In this paper, we have proposed a method for searching 
optimal route bundles based on a self-adaptive class of 
Differential Evolution and a convex representation. The 
basic idea of our approach is to sample over a triangu-
lated search space by using self-adaptive interpolation 

vectors. And the unique point of our proposed method 
is the possibility to balance exploration and exploitation 
while sampling arbitrary points in a convex search space 
of route bundles. Then, it becomes possible the rendering 
of feasible route bundles efficiently since: (1) absence of 
overlaps with obstacles is guaranteed, and (2) computa-
tion of point inside polygon is explicitly avoided. Com-
putational experiments involving more than 12,000 route 
bundling cases and 11,250,000,000 evaluations of path 
planning in a diverse class of polygonal domains show 
that (1) it is possible to obtain bundled routes with an 
optimized global distance metric via a reasonable num-
ber of sample evaluations, (2) the convergence towards 
the optimal solutions is possible over independent runs, 
(3) smaller populations are always beneficial, and (4) the 
interpolation vectors in the global and local neighbor-
hood and the convex representation are useful not only 
to allow faster convergence, but also to allow escaping 
from stagnation.

Fig. 13  Comparison of convergence in polygonal domains of S = 5 sides
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In our future work, we aim at using polygonal environ-
ments reminiscent of outdoor configurations in which 
the number of edges of the bipartite network is allowed to 
increase. Also, in our future endeavors, we aim at explor-
ing the generalization ability in dynamic environments, 
where both the input bipartite graph and the polygonal 
obstacles are allowed to change. We believe our approach 
opens new frontiers to further develop compounded and 
global path-planning algorithms via gradient-free opti-
mization algorithms and convex representations of the 
search space.
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