
Tian and Ma ﻿Robot. Biomim.  (2016) 3:20 
DOI 10.1186/s40638-016-0053-z

RESEARCH

Probabilistic double guarantee 
kidnapping detection in SLAM
Yang Tian1*   and Shugen Ma1,2

Abstract 

For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs 
autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been 
proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is 
found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale 
environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this 
paper to combine probability of features’ positions and the robot’s posture. Simulation results demonstrate the valid-
ity and accuracy of the proposed method.
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Background
Different fields like factories, hospitals and houses 
require mobile robots to navigate autonomously and to 
perform tasks by themselves. In this situation, robots 
should be able to make a map of the environment and 
recognize its posture (position and orientation) in this 
map [1–3]. Simultaneous localization and mapping 
(SLAM) is a fundamental technique that can provide the 
required information to mobile robots [4, 5]. In SLAM, a 
robot incrementally builds a consistent map of the envi-
ronment while simultaneously determining its posture 
within this map. Many algorithms have been proposed 
to be implemented in a number of different autonomous 
mobile robots ranging from indoor and outdoor robots 
to underwater and airborne vehicles. The methods exist-
ing today allow the problem to be considered as solved, 
but some issues still need to be studied.

Some SLAM methods using current sensor and odom-
etry data are based on pose tracking, which is a localiza-
tion method for detecting the location of the mobile robot 
based on a given initial robot posture. Starting from this 
point, the robot posture is recognized by continuously 
tracking the robot’s path. If a well-tracked robot is suddenly 

moved to somewhere else without being told, the problem 
is called kidnapping. The autonomous robot should detect 
this problem in real time; otherwise, failures or faults are 
caused by the effects from kidnapping. Thus, the robot may 
execute a wrong action using the wrong information, even 
hurting humans, environment or damaging itself.

Especially in SLAM process, there are two differ-
ent types of situations that may occur if kidnapping 
happens, which are shown in Fig.  1. When the mobile 
robot is doing the SLAM process, the environment will 
be mapped with features. If kidnapping happened, like 
in  situation 1, the mobile robot will be kidnapped to a 
previously explored area. Then, the mobile robot can 
recognize its posture in the global coordinates with the 
known map which was created by SLAM. In situation 2, 
since the robot is kidnapped to a new area, the true loca-
tion cannot be estimated by the existing map. The mobile 
robot thus needs to create a new SLAM process to esti-
mate its position in a new global coordinates. Either situ-
ation needs kidnapping detection to identify whether 
kidnapping has happened, because the existing kidnap-
ping recovery method is impossible to be executed all the 
time if the kidnapping belongs to situation 2.

While kidnapping happens in SLAM, the original 
information including states of the robot and the map 
generated by SLAM will be affected without a kidnap-
ping detection, as shown in Fig. 2. First, the robot creates 
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the extra incorrect information, such as a wrong posi-
tion of the robot and new features. Since this incorrect 
information cannot refer to original global coordinates, 
the mobile robot cannot utilize this information to navi-
gate autonomously. Second, with some classic SLAM 
algorithms such as EKF-SLAM [6] and FastSLAM [7, 8], 
the original information built before kidnapping is also 
deformed. This is the point that is different in known 
map kidnapping problem. Since the state of posture of 
robot and all features are correlated, there is influence on 
all information with the incorrect information. Therefore, 
the original information will be totally deformed with-
out a timely kidnapping detection. For recovering from 

kidnapping, the mobile robot should rebuild informa-
tion to locate itself. In this case, the efficiency of SLAM 
would be significantly reduced, especially in a large-scale 
environment.

In our previous research [9], we have proposed a dou-
ble guarantee kidnapping detection (DGKD) in SLAM. 
It constructs a double guarantee to judge whether kid-
napping has happened and which type of kidnapping it 
is. However, DGKD has its own limitation in the large-
scale environment. In this paper, an improved method 
‘probabilistic double guarantee kidnapping detection 
(P-DGKD)’ is proposed to maintain similar ability of kid-
napping detection in the large-scale environment. In the 
next section, the related work and limitation of DGKD 
will be described.

Related work
Most of the literature focusing on the pose estimation 
has concentrated on the pose tracking problem. Some 
approaches explicitly dealing with sensing, model and 
movement uncertainty have appeared [10]. Common to 
these approaches is that they use a probabilistic formula-
tion to represent and update the pose of the robot. This 
has the advantage of enabling them to handle uncertainty 
in a natural and convenient manner. These approaches, 
also known as Markovian methods, use a spatially dis-
cretized representation of the environment where each 
cell holds the probability that the robot occupies the area 
represented by the cell. They use a two-step procedure to 
update this representation, namely (using their nomencla-
ture) the ‘move’ step where the fact that the robot moves 
is accounted for by shifting probability mass between cells 
according to the robot movement, and the ‘sense’ step 
where Bayesian updating is used to incorporate new evi-
dence stemming from a feature/map comparison. In gen-
eral, the ‘sense’ step concentrates probability mass in some 
areas and the ‘move’ step disperses it. This ’blurring’ is due 
to the fact that the probability mass is not only shifted, but 
also smeared to account for robot movement inaccuracies. 
For the global localization to ’converge,’ it is important that 
the evidence achieved in the ‘sense’ step more than com-
pensates for the additional pose uncertainty introduced by 
the ‘move’ step. This fact stresses the importance of having 
an efficient movement/sensing strategy, i.e., to do active 
sensing, since moving randomly in general does guarantee 
gaining evidence efficiently enough. However, they do the 
re-localization (global localization) all the time, regardless 
of whether kidnapping has happened or not. For maintain-
ing validity, these methods need to be executed at high 
frequency. It results in wasting lots of computational cost, 
which is inefficient and is not well suited for SLAM.

On the other hand, some efficient methods to solve the 
kidnapping detection have been proposed recently. Physical 

Fig. 1  Two kidnapping situations in SLAM which includes the robot 
kidnapped to explored area or unexplored area

Fig. 2  Information state during kidnapping in SLAM. When the SLAM 
is performing, the information about the robot and the environment 
is building; since the kidnapping will cause the information incorrect, 
correct information should be rebuilt by suitable methods with differ-
ent situations
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methods that use incorporate sensors to measure whether 
kidnapping has happened or not can be applied simply and 
directly, e.g., barometer [11], accelerometer [12] and switch 
[13]. However, there are limitations existing in these meth-
ods. First, additional sensors are required to be mounted on 
the robot. Therefore, the reliability of these methods cannot 
be ensured while the sensors’ state is abnormal. Second, 
each of the sensors can detect only a specific type of kid-
napping. Third, the robots equipped with low power source 
cannot adopt these methods. Mathematical methods only 
utilize inherent sensors to observe abnormal situations. 
Compared to the physical methods, they can be used in the 
robots that have proprioceptive and exteroceptive sensors 
to locate themselves. Using entropy of location probabilities 
[14], the robot can detect kidnapping with the given infor-
mation. However, it cannot be applied in SLAM where the 
information of the map is unknown. Metric-based detec-
tion [15] that can be utilized in unknown environment has 
a good performance in detecting the kidnapping. However, 
in some specific situations, it may fail to evaluate correctly 
if kidnapping has happened, such as the robot is kidnapped 
into a similar place in unexplored area.

Comparing with the other studies, two new processes 
are added to execute the evaluation while SLAM is work-
ing in DGKD procedure. They have the double guaran-
tees to judge whether kidnapping has happened and 
which type of kidnapping it is. Figure  3 shows overall 
workflow of DGKD. The method increases the reliability 
of kidnapping detection that prevents the information 
from deforming. In addition, a more reasonable metric 
has been introduced to avoid a misjudgment in a specific 
situation and a convenient method has been proposed 
to determine reasonable thresholds for the metrics on a 
real-time condition. However, DGKD has its own limita-
tion in a relatively large-scale environment. To show the 
limitation of DGKD, simulation has been done in a rela-
tively large-scale environment without kidnapping hap-
pening under the conditions shown in Table 1.

The size of the robot in our simulation is shown in 
Fig.  4. The map and non-kidnapping simulation are 
shown in Fig.  5. As indicated in Fig.  5a, ‘RPF’ denotes 
the real positions of the features. ‘Wpoint’ denotes the 
waypoint and ‘Wpath’ denotes the path connected with 
waypoints. The robot needs to drive itself toward each 
waypoint by the shortest path. The scale of the environ-
ment is relatively large according to the size of the robot 
and the range of the sensor. The scale of the map is about 
11 times larger than the robot size and 15 times larger 
than the range of the sensor. Figure  5b shows the non-
kidnapping SLAM progress with the map. ‘APR’ denotes 
the actual position of the robot. ‘EPF’ and ‘ECE’ represent 
the estimated position of the feature and its covariance 
ellipses. In non-kidnapping situation, the EPF is near 
the RPF and the distance between them becomes larger 
as time step passed. Figure 6 shows the response of met-
rics and their adapted thresholds. In non-kidnapping 
situation, the value of metrics Qp and Qs should be lower 
than the threshold Tp1 and Ts, where Qp and Qs belong to 
front-check process and verification process separately. 
However, some values of the metrics are beyond thresh-
olds when time step increased, as shown in Fig. 6. This is 
because the uncertainty of the state has been increased 
by the process of SLAM, which is its own problem in 
the SLAM process. When the mobile robot is working 
in the large-scale environment without loop closure, the 
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Fig. 3  Overall workflow of the DGKD. It embeds two new processes 
in the ordinary SLAM processes to construct double guarantee
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Fig. 4  Dimensions of the robot

Table 1  Simulation condition

Condition Value

Robot speed 0.3 m/s

Control cycle 0.2 s

Observation cycle 0.2 s

Max range of observation 3 m

Variance of speed noise 0.09 m/s

Variance of orientation noise 9°

Variance of observation position noise 0.01 m

Variance of observation angle noise 1°
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probability of false alarm is increased in DGKD by this 
increased uncertainty, which means that the total perfor-
mance of DGKD is decreased. For keeping similar per-
formance of DGKD in the large-scale environment, an 
improved method called probabilistic double guarantee 
kidnapping detection (P-DGKD) is described in the next 
section.

Probabilistic double guarantee kidnapping 
detection
In this paper, we assume that the robot works in 
2-dimensional space and the observation can be meas-
ured all the time. The robot’s state is described by the 
vector Xr = [xr , yr ,φr]

T, in which (xr , yr) represents the 
position and φr represents the orientation of a frame 

Fig. 5  Map and EKF-SLAM. a Map for simulation. b Result of EKF-SLAM without kidnapping

Fig. 6  Non-kidnapping with DGKD. a Response of the metric Qp. b Response of the metric Qs
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attached to the robot. The state of features is denoted by 
Xm = [XT

m1
,XT

m2
, · · · ]T , in which Xmi = [xmi, ymi]

T rep-
resents the position of the feature i in the global coordi-
nates. Xmi is given by

where (Lxi,L yi) represents the position of feature i 
referred to the local coordinates frame attached on the 
robot. Therefore, the state vector is X = [XT

r ,X
T
m]

T , 
which contains both the robot state Xr and the feature 
states Xm.

In predicting process in SLAM, the predicted state 
X(k + 1|k) = [XT

r (k + 1|k),XT
m(k + 1|k)]T at time steps 

k is given by

or

where (Xr(k|k),Xm(k|k)) is the state at the time step k, 
u(k) indicates the control measurement at time step k, 
wr(k) is the process noise assumed to be white Gaussian 
with zero mean, and its covariance matrix is denoted as 
Q. The function f and F depends on the robot model.

Prediction of the state covariance matrix P(k + 1|k) is 
given by

where ∇FX is the Jacobian of F with respect to X evalu-
ated at X(k|k), P(k|k) denotes the state covariance matrix 
at time step k.

The observations Z(k + 1|k) that are obtained from the 
state X(k + 1|k) at the time step k are given by

where H defines the nonlinear coordinates transforma-
tion from the state to the observation Z(k + 1|k). The 
observation noise v(k) is assumed to be white Gaussian 
with zero mean and uncorrelated the process noise wr(k) . 
In observation process, the Z(k + 1|k + 1) is measured 
from the actual environment, and its covariance matrix 
is denoted by R(k + 1|k + 1). To compare observations 
in sequential time steps, the kidnapping can be detected 
and distinguished.

Update the state and the associated covariance matrix 
using the observation Z(k + 1|k + 1),

(1)Xmi =

[

cosφr − sin φr
sin φr cosφr

][

Lxi
Lyi

]

+

[

xr
yr

]

(2)X(k + 1|k) = F(Xr(k|k),u(k))+ w(k)

(3)X(k + 1|k) =

[

f (Xr(k|k),u(k))
Xm(k|k)

]

+

[

wr(k)
0

]

(4)P(k + 1|k) = ∇FXP(k|k)∇FT
X + Q

(5)Z(k + 1|k) = H(X(k + 1|k))+ v(k)

(6)

X(k + 1|k + 1) = X(k + 1|k)+ K (k + 1)[Z(k + 1|k + 1)

−H(X(k + 1|k))]

P(k + 1|k + 1) = P(k + 1|k)

− K (k + 1)S(k + 1)K (k + 1)T

where

and ∇HX is the Jacobian of H with respect to X evaluated 
at X(k + 1|k).

The main structure and workflow of P-DGKD are same 
with DGKD. The main difference with DGKD is the met-
rics. In P-DGKD, the uncertainty of state is combined to 
the metrics. New improved metrics have the same name 
as DGKD and are used in original processes separately.

With the root-mean-square, Qp is given by

where

and N represents the number of the overlapped observed 
features between sequential time step k and k + 1. Zi 
denotes the observation of ith overlapped feature. Qo is 
given by

where

Qs is given by

where

and M denotes the number of the overlapped features 
between sequential time step k and k + 1.

Comparing with DGKD, P-DGKD adds the associ-
ated covariance matrix into metrics. This modification 
can decrease the effect of the increasing uncertainty in 
SLAM process. It can decrease the rate of false alarm in 
the whole detection reports. It causes that the whole per-
formance of P-DGKD is better than DGKD. About the 
thresholds of metrics, the method proposed in DGKD is 
used in P-DGKD. Detection and classification condition 
are the same as that in DGKD.

(7)

K (k + 1) = P(k + 1|k)∇HT
X S(k + 1)−1

S(k + 1) = ∇HXP(k + 1|k)∇HT
X + R(k + 1|k + 1)

(8)Qp =

√

√

√

√

1

N

N
∑

i=1

Vi(k)TSi(k)−1Vi(k)

(9)
Vi(k) = Zi(k + 1|k + 1)− Zi(k + 1|k)

Si(k) = Ri(k + 1|k + 1)+ Ri(k + 1|k)

(10)Qo =

√

√

√

√

1

N

N
∑

i=1

Wi(k)TMi(k)−1Wi(k)

(11)
Wi(k) = Zi(k + 1|k + 1)− Zi(k|k)

Mi(k) = Ri(k + 1|k + 1)+ Ri(k|k)

(12)Qs =

√

√

√

√

1

M

M
∑

i=1

Di(k)TOi(k)−1Di(k)

(13)
Dmi(k) = Xmi(k + 1|k + 1)− Xmi(k + 1|k)

Omi(k) = Pmi(k + 1|k + 1)+ Pmi(k|k)
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Simulation results
Simulations were conducted to investigate the feasibility 
and accuracy of the proposed method. We implemented 
the described method using MATLAB in a personal com-
puter (CPU: 3.40GHz Intel Core i5, Memory: 8 GB DDR3). 
The source code is based on EKF-SLAM in SLAM pack-
age of Tim Bailey. We modified and added our method in 
it. Other basic parameters for simulations are same to our 
previous research of DGKD [9]. The map of simulation has 
been shown in Fig. 5a. We did simulations in a no actual 
kidnapping situation during the whole SLAM process. The 
results of metrics of Qp and Qs are shown in Fig. 7.

In non-kidnapping situation, the value of metric Qp is 
less than the first threshold Tp1, and metric Qs is lower 
than the threshold Ts. Comparing with the simulation 
results of DGKD shown in Fig. 6, the value of both met-
rics is below the thresholds after time steps increased. 
This means that, although the uncertainty of the state 
increased by the SLAM process, influence in kidnapping 
detection has been decreased.

For getting the whole performance of P-DGKD, we also 
did tests in kidnapping situation during SLAM process. 
The kidnapping is a man-made movement to the robot 
to simulate the real kidnapping that the robot is moved 
by the human in the environment. Then, we can judge 
whether the report of P-DGKD is a true alarm or a false 
alarm or no alarm. The result of the metrics where kid-
napping happened at time step 600 is shown in Fig. 8.

Before the kidnapping, the value of metric Qp is lower 
than the first threshold Tp1. When kidnapping happens in 
the 600th time step, Qp is larger than the second thresh-
old Tp2. Moreover, the value of the metric Qs also exceeds 
the threshold Ts. It means P-DGKD can detect kidnap-
ping correctly in this situation.

Several other simulations were conducted to show the 
performance of P-DGKD and DGKD. Different simula-
tions were conducted to verify the performance under 
the kidnapping situation and the non-kidnapping situ-
ation. In each simulation, one-time kidnapping event is 
set randomly from step 500 to time step 800. The results 
processed by ROC are shown in Table  2. About report 
of kidnapping in DGKD and P-DGKD, the true-positive 
rate is the fraction of detected kidnapping out of the total 
number of actual kidnapping events, and the false-positive 
rate is the fraction of non-kidnapping time steps that is 
incorrectly detected out of the total number of actual non-
kidnapping time steps. Comparing with DGKD, the false-
positive rate is decreased in P-DGKD, which means that 
the possibility of the false alarm is decreased. At the same 
time, the true-positive rate of P-DGKD is also decreased 
a little comparing with DGKD. That means although the 
rate of false alarm is decreased, P-DGKD is not as sensitive 
as DGKD dealing with the real kidnapping. Totally consid-
ering, the performance of P-DGKD is better than DGKD.

Conclusion
In this paper, we have presented a probabilistic double 
guarantee kidnapping detection in SLAM. Compared 
with our proposed method DGKD, P-DGKD is more 
suitable for the large-scale environment. In P-DGKD, 
a probabilistic formulation is used to add uncertainty 
of robot posture and features in the metrics which can 
judge whether kidnapping happened. Using the proposed 
method, the kidnapping event can be detected accurately 
and robustly. Simulation result shows the validity and 
feasibility of the proposed method.

In future studies, we plan to detect the kidnapping of 
the robot in the case that the kidnapping happens over 

Fig. 7  Non-kidnapping with P-DGKD. a Response of the metric Qp. b Response of the metric Qs
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a long time. Our proposed method can well solve the 
problem for a short-time kidnapping event. However, if 
the kidnapping happens in a long time, such as a human 
carrying the robot for a long distance, or the robot slips 
all the time in a specific area, the method introduced in 
this paper could result in a failure. Further verification of 
DGKD in a real environment is also our future work.
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Table 2  Operating characteristics of detection

Detection True-positive rate False-positive rate

DGKD 0.9900 0.1203

P-DGKD 0.9800 0.0431
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