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recognition for home service robots
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Abstract 

This paper proposes and implements an open framework of active auditory learning for a home service robot to serve 
the elderly living alone at home. The framework was developed to realize the various auditory perception capabili-
ties while enabling a remote human operator to involve in the sound event recognition process for elderly care. The 
home service robot is able to estimate the sound source position and collaborate with the human operator in sound 
event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed frame-
work and evaluated auditory perception capabilities and human–robot collaboration in sound event recognition.
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Background
For the elderly who live independently in their own resi-
dence, home service robots can play as a social com-
panion to collaborate and interact with the elderly. One 
important communication channel in human daily life is 
the sound, which includes voice and non-voice. There-
fore, it is desirable to equip home service robots with 
sound processing capability. The robot needs to know 
where the sound sources are located even when multiple 
sound sources exist. This can help the robots respond to 
human commands and events more accurately. Further-
more, it is very important for the home service robots 
to understand the sound events that are generated by 
human’s daily activities such as cooking, drinking, wash-
ing hands, having shower, using a toilet, sounds associ-
ated with anomalous behaviours such as falling on the 
floor. Sound event recognition helps the robot not only 
monitor elderly’s activities but also detect anomalies 
happening in their home. Such a human-aware capa-
bility frees the robot to do its daily routine work, while 

being able to take care of the elderly more proactively and 
effectively.

In recent years, home service robots for the elderly 
living alone at home have been receiving growing inter-
est. There are already some commercial assistive social 
robots for elderly care, such as Pearl, Aibo  [1], Care-o-
Bots  [2], Homie, iCat, Paro, and Huggable.  [3]. Some of 
them, for example Pearl and Care-o-Bots, can recognize 
words, synthesize speech, work as autonomous guidance 
or telepresence robots, and remind people about daily 
activities such as eating, drinking, and taking medicine, 
but they do not have the auditory capability that enables 
the robots to understand both voice and event sounds. 
Several research and development robots for domestic 
environments, such as Johnny  [4] and European Com-
panionAble project’s Hector  [5], were equipped with 
mapping, navigation, friendly graphical user interface 
(GUI), speech recognition, etc. The PR2 robot platform 
was programmed to help a severely disabled man  [6]. 
However, these robots are not able to recognize sound 
events, especially in a multi-source environment.

Recently, sound event recognition (SER) has received 
growing attention from the research community. Vari-
ous approaches have been developed for SER. Most 
approaches are derived from the research on speech 
recognition, such as hidden Markov models (HMM) 
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with mel-frequency cepstral coefficients (MFCCs)  [7], 
Gaussian mixture models (GMMs) with LFCC  [8], and 
iGMM  [9]. On the other hand, nonparametric learn-
ing methods have been proposed, such as the technique 
based on sparse coding of stabilized auditory images 
(SAIs)  [10]. Recently, principal component analysis and 
linear discriminant analysis are applied to the scale-
frequency map to generate the feature for sound event 
classification based on the multi-class SVMs [11]. SVM-
based methods show high performance on sound event 
recognition. MFCC-SVM can achieve an accuracy rate of 
74.50 % [12]. Several works have applied deep neural net-
works (DNNs) for polyphonic sound event recognition, 
such as multi-label DNNs [13], novel spiking neural net-
work system  [14], and DNN-based framework with the 
different spectrogram image-based front features such 
as Google-style SAI features and spectrogram image fea-
tures (SIFs) [15]. These works were mainly tested on the 
sound event databases that are the mixtures of sounds in 
both indoor and outdoor environments. However, only a 
few sound events that are associated with the daily activi-
ties of the elderly in home environment have been evalu-
ated by the auditory systems on the robots.

Humans have strong capability of auditory perception, 
which enables them to not only understand the voice and 
non-voice sounds, but also sort through the incoming 
information. It is highly desired to equip the robots with 
both speech recognition and sound event recognition 
capability. Speech recognition has been well researched, 
and there is even open-source software available, such as 
PocketSphinx [16] and Julius [17]. However, sound event 
recognition is still challenging due to the diversity of the 
sounds associated with the same event. For example, even 
the same event of an elderly person falling on the floor 
can create different sounds, depending on where the fall 
occurs. Different events also produce different sounds, 
which makes it extremely hard to preprogram the robot 
with a small set of training data. Moreover, it is not easy 
for humans to recognize what is going on from hearing 
domestic audio without context. The knowledge of the 
context is one important factor that allows the humans 
to hear in unconstrained environments and helps them 
form predictions and guide their perception of the envi-
ronment  [18]. These examples tell us that such a robot 
should gradually learn the audio events in its unique 
environment and, whenever possible, get assistance from 
humans who can provide guidance on the auditory learn-
ing process. It is also desired that the robot can provide 
contextual information for the humans by estimating the 
position of sound sources.

In this paper, we propose that by putting a human in 
the loop of sound event recognition, a robot can better 
understand and more quickly adapt to its environment. 

The human-assisted sound event recognition for home 
service robots is proposed and implemented based on 
our previous work  [19]. Using a microphone array, the 
robot is able to localize and separate multiple sound 
sources. Then, the robot classifies the separated sounds 
into voice and non-voice. The non-voice sounds along 
with location data can be sent to a human caregiver for 
recognition and labelling. Since only non-voice sound 
is sent to outside, the privacy of the elderly can be pro-
tected. With more and more labelled event sound data, 
the robot can train its sound event recognition algorithm 
to achieve better accuracy, therefore enabling incremen-
tal auditory learning. Such human–robot collaboration in 
sound event recognition allows developing social intelli-
gence through active auditory learning.

This paper is organized as follows: The next section 
describes the design of the robot platform with an audi-
tory system. Then, we describe the implementation of 
auditory services and human-assisted sound event rec-
ognition, respectively. Following that, experiments and 
results are presented to verify the working of the frame-
work. Finally, we conclude the paper and indicate the 
potential future work.

Robot platform with an auditory system
The ASCC home service robot is built with a pre-existing 
mobile platform as shown in Fig. 1. Besides basic features 
such as simultaneous localization and mapping (SLAM) 
and autonomous navigation based on 2D maps, the robot 
also has the capability of auditory perception to collabo-
rate with the remote caregiver to recognize sound events.

Home service robot platform
Robot hardware
Our home service robot as shown in Fig. 1 was built on a 
Pioneer P3-DX base with approximately a 1.5-m-long alu-
minium frame holding up a touch screen monitor, which is 
used for video communication and graphic user interface. 
Mounted on it are a RGB and Depth (RGB-D) camera, a 
laser range finder (LRF), an Intel NUC minicomputer, 
and a netbook computer. The RGB-D camera mounted 
on top of the robot is an ASUS Xtion PRO LIVE, which 
allows developing functions such as 3D mapping, obstacle 
avoidance, and gesture-based control. The LRF, a Hokuyo 
URG-04LX-UG01, is a low-power LRF with a wide range 
up to 5600 mm × 240° and an accuracy of 30 mm.

Robot software
The software for the robot was developed on ROS  [20] 
which runs in Ubuntu on the Intel NUC minicomputer. 
For the basic functions in the robot, we utilized existing 
packages from the ROS repositories to set up drivers that 
interface with the robot base, the Hokuyo LRF, and the 
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Xtion camera. Two main services including SLAM and 
navigation were developed based on existing ROS pack-
ages. SLAM was based on Rao-Blackwellized particle 
filters  [21]. Motion planning and autonomous naviga-
tion were based on the particle filter-based localization 
method and the adaptive (or KLD-sampling) Monte 
Carlo localization approach [22].

Auditory system
Auditory hardware
The hardware for auditory perception as shown in Fig. 1 
was built with 4 G.R.A.S IEPE (integrated electronic pie-
zoelectric) microphones and an NI USB-9234 DAQ (data 
acquisition). This set of microphones has high sensitivity 
at 50 mV/Pa, a wide frequency range up to 20 kHz, and a 
large dynamic range topping at around 135 dB. The DAQ 
is a USB-based four-channel C Series dynamic signal 
acquisition module for high-accuracy audio-frequency 
measurements from IEPE and non-IEPE sensors. It can 
deliver a dynamic range of 102 dB, incorporate program-
mable AC/DC coupling and IEPE signal conditioning for 
accelerometers and microphones, as well as digitize signals 
at rates up to 51.2 kHz per channel with built-in antialias-
ing filters that automatically adjust to the sampling rate.

Auditory software
The auditory software platform was based on HARK [23], 
which is an open-sourced audition software consisting 
of modules for acoustic signal processing, sound locali-
zation and separation, speech recognition, and audio 
streaming. The data collection program was developed to 
capture the audio data from the microphones, filter them 
out, and send them to AudioStreamFromMic block (an 

audio stream receiver) through a WiFi TCP/IP socket for 
further processing.

HARK‑based auditory services
As shown in Fig. 2, developed using HARK, audition ser-
vices perform sound localization, sound separation, and 
voice/non-voice recognition from the four-channel audio 
stream coming from the data collection module.

Sound localization and separation
Sound localization is implemented based on the GEVD 
(generalized eigenvalue decomposition) method  [24]. 
Direction of arrival (DOA) in the horizontal plane 
is estimated by the multiple signal classification 
(MUSIC) method [25], which has shown the best per-
formance. This method localizes sound sources based 
on source positions and impulse responses (transfer 
function) of microphones. The transfer function gen-
erally varies depending on the shape of the room and 
the relative positions between microphones and sound 
sources  [26]. However, when ignoring acoustic reflec-
tion and diffraction, and given that the relative posi-
tion of microphones and sound sources is known, the 
transfer function HD(ki) is limited only to the sound 
source direction and calculated by the following 
Equation [26]:

where c is the speed of sound; ωi is the frequency in 
the frequency bin ki; rm,n is the difference between the 
distance from the microphone m to the sound source n 
and the distance from the reference point of the coor-
dinate system to the sound source n.

The sound that is emitted from N sound sources is 
affected by the transfer function H(ki) in space and 
observed through M microphones as expressed by Eq. (2).

where S(ki) is the sound source complex spectrum cor-
responding to the frequency bin ki; N (ki) is the additive 
noise that gets into each microphone.

The matrix of a complex spectrum of separated sound 
Y (ki) is obtained from the following equation:

The separation matrix W (ki) is estimated by Geo-
metric-Constrained High-order Source Separation 
(GHDSS)  [27], which has the highest total performance 
in various acoustic environments. With the source direc-
tion from sound localization, the separated sound Y (ki) is 
likely close to its sound source S(ki).

(1)HDm,n(ki) = exp

(

−j2πωi

c
rm,n

)

(2)X(ki) = H(ki)S(ki)+ N (ki)

(3)Y (ki) = W (ki)X(ki)

Fig. 1  The home service robot platform and the auditory system
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Voice/non‑voice recognition
The separated sounds are classified into voice and non-
voice. To achieve this, we use the support vector machine 
(SVM) algorithm. In SVM, the kernel function is applied 
to transform nonlinear and high-dimensional feature 
vectors into simpler feature vectors that can be classified 
by the optimal decision hyperplane using linear discrimi-
nant functions. The kernel function widely used in SVM 
for audio applications is the Gaussian radial basis func-
tion (RBF) as follows:

where γ is a control parameter estimated from the vari-
ance of the distribution function of the training data. 
RBF-SVM aims to construct the decision function for 
the data point x based on N support vectors {xk}Nk=1 and 
labels {yk}Nk=1 as follows:

where αk is the weight assigned to the support vector xk , 
b is a constant bias. As shown in Fig. 3, the RBF-SVM was 
implemented for voice/non-voice recognition based on 
Voice Active Detection proposed in [28]. In order to train 
the SVM, the audio training data consisting of labelled 
voice and non-voice segments are decomposed into 

(4)K (xi, xj) = exp
(

−γ �xi − xj�
2
)

(5)y(x) = sign

[

N
∑

k=1

αkykK (xk , x)+ b

]

frames. The 36-MFCC feature vectors are computed for 
each frame. The trained SVM model can classify frames 
of separated sounds into voice or non-voice.

Human‑assisted sound event recognition
To the best of our knowledge, this is the first work that pro-
posed a framework for human–robot collaboration in sound 
event recognition. The framework allows the robot not only to 
capture and separate acoustic events but also to estimate the 
context of sound events and send the audio data along with 
their contextual information to human caregivers for labelling. 
Human-assisted sound event recognition contains three func-
tions: sound source position estimation, human-assisted label-
ling, and autonomous sound event recognition as shown in 
Fig. 2. The robot is able to estimate the sound source position 
and send only non-voice sounds along with location data to a 
human caregiver for recognition and labelling. The labelled data 
are stored in the sound library (SoundLib), which can be used to 
train the sound event recognition algorithm on the robot.

Sound source position estimation

The direction of the sound source can be estimated 
using the sound localization method described above. 
With one stationary microphone array, it is hard to esti-
mate the sound source position. However, the home ser-
vice robot can move around, which makes it possible to 

Fig. 2  The framework of human-assisted sound event recognition
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use triangulation to localize the sound source. Figure 4 
shows an example of using triangulation to estimate the 
positions of two sound sources. If the robot can measure 
the sound direction at two different positions on the 2D 
map, the sound position can be estimated by calculat-
ing the intersection of two lines pointing to the sound 
sources from the robot positions. This method may cre-
ate a undesired intersection point like point P as shown 
in Fig.  4. However, this point moves when the robot 
measures at another position. Therefore, it can be elimi-
nated given the assumption that the sound sources are 
stationary. With multiple steps, the robot can improve 
the accuracy of position estimation using the RANdom 
SAmple Consensus (RANSAC) algorithm  [29]. The 
sound source position estimation algorithm is shown in 
Algorithm 1.

Human‑assisted labelling
Many non-voice sounds are generated by human activi-
ties at home, such as having shower, flushing a toilet, 
soaping hands, washing hands, brushing teeth in the 
bathroom; using a microwave oven, and boiling water 
in the kitchen. Recognizing these sounds can help the 

robot understand human activities. However, due to 
the lack of sufficient training samples in the individual 
home environment, it is very hard to achieve satisfac-
tory non-voice sound recognition. Therefore, as shown 
in Fig. 2, we propose to let the robot and the human car-
egiver collaborate to recognize it. Basically, the robot 
sends the segment of non-voice sound to the caregiver, 
who then recognizes it and labels it through a user inter-
face. Such an interface can be on a computer, or a mobile 
device such as a tablet or smartphone. The sound library 
(SoundLib) consists of labelled sound events, which 
can be used in the training of the sound event recogni-
tion algorithm, therefore enabling incremental learning. 
When sufficient labelled data are available, the robot will 
be able to use the recognition algorithm to accurately 
recognize the event sounds.

Autonomous sound event recognition
In this work, we implement sound event recognition 
based on multiple class SVMs with MFCC features. 
SVM was originally designed for binary classification. 
However, it can be utilized to construct multi-class clas-
sification or recognition in several approaches. The first 
approach is decomposition by combining multiple SVMs 
using One-Against-One (OAO), One-Against-All (OAA), 
or hierarchical binary tree methods. The second is global 
or all-together approach by solving a single optimiza-
tion problem. Compared with other methods by experi-
ments on large problems, Hsu and Lin concluded that 
the OAA method could be more suitable for practical 
use [30]. As shown in Fig. 5, the multi-class classification 
is constructed by K SVM models where K is the number 
of classes. SVM models are trained by the One-Against-
All (OAA) method. The ith SVM is trained with all train-
ing data in the ith class with positive labels and all other 
training data with negative labels. After the training 
phase, there are K decision functions as follows:

where αi
k is the weight assigned to the support vector xik; 

bi is a constant bias of the ith SVM.
The input x is classified into the class which has the 

largest value of the decision functions:

(6)Y i(x) =

Ni
∑

k=1

αi
ky

i
kK

(

xik , x
)

+ bi, i = 1, . . . ,K

Fig. 3  Voice/non-voice recognition

Fig. 4  Sound source position estimated by triangulation

Algorithm 1: Sound Source Position Estimation
1. Measure direction data in N steps:
for step = 1 to N do

- Do sound localization in T seconds
- Remove data with large Root-Mean-Square-Error
- Generate the goal point on based on direction data and
the map and navigate the robot.

2. Calculate intersection points:
- Calculate intersection points by triangulation between the N
groups of direction.
- Remove the intersection points outside the map.
3. Random and select data:
for k = k0 to Maximum-of-K-times do

- Pick up n random points in intersection groups and
calculate RMSE of each n-point subgroup.

4. Calculate sound positions from average of the subgroups
with the least Root-Mean-Square-Error.
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SVM-based SER is implemented by using OAA, RBF, 
and 36-MFCC feature vectors.

Experiments and results
We conducted physical experiments to test and evalu-
ate our framework. A smart home testbed is set up in 
our laboratory at the area of 16 ft × 22 ft as shown in 
Fig. 6. It simulates a small apartment, which includes a 
living room, a bedroom, a kitchen, a dinning room, and 
a bathroom. Furniture is set up in different rooms. Dur-
ing the experiment, we use the OptiTrack system  [31] 
to provide the location ground truth of the robot, the 
speakers, and the human to evaluate sound localiza-
tion as well as sound source position estimation. We 
developed a system to simulate the multiple sound 
events like those in a typical house. As shown in Fig. 7, 
the sound simulation system includes multiple audio 
nodes, an audio server, and an audio control applica-
tion. The audio nodes were developed using minicom-
puters (Beagleboards) and speakers. The sound events 
in the bathroom, kitchen, living room, bedroom, and 
dinning room were recorded or collected from the 
Internet. Currently, our sound library (ASCC Sound-
Lib) has 50 sound event files and 50 speech files. As 
shown in Fig.  7, audio control programs for the audio 
server and the android smartphone were developed 
to play sounds associated with the human activities 
or play multiple sound event files at the same time on 

(7)y = arg maxi=1,...,k

{

Y i(x)
}

different speakers placed at different locations. For 
example, it can play both the TV sound in the living 
room and the shower sound in the bathroom, or play a 
sequence of sound events related to the cooking activ-
ity in the kitchen. The script or schedule for playing 
sound events can be written in the JSON (JavaScript 
Object Notation) format.

Sound localization
Sound localization was tested using the sound simula-
tion system and the OptiTrack system. To fully evalu-
ate the accuracy of the sound localization, the speaker 
was placed at different directions (0◦,±45◦,±90◦, and 
±135◦) and distances (0.5, 1, 2 and 3  m) with respect 
to the robot. The OptiTrack system obtains the rela-
tive locations between the speaker and the robot, which 
are treated as the ground truth. For each location, we 
run the sound localization algorithm 10 times and cal-
culated the mean and the standard deviation, which are 
given in Table 1. The sound sources can be localized at 
reasonable accuracy. From Table 1, the detection errors 
are close in the same distance and not very sensitive to 
the direction of the sound sources. However, the errors 
increase with the distance. The standard deviation of 
errors is < 2◦ at 0.5  m and < 4◦ at 3  m away from the 
robot.

Sound separation and voice/non‑voice recognition
Event sounds and voice sounds in our SoundLib are 
randomly divided into training and testing data for 
the SVM-based VNR. We labelled non-voice for all 

Fig. 5  SVM-based sound event recognition
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frames in event sounds and voice for all frames in 
voice sounds. The VNR was trained by 36-MFCC fea-
ture vectors extracted from the audio segments with 

a length of 512 samples. The testing event sounds and 
voice sounds were divided into voice/non-voice pairs 
that were simultaneously played by two speakers at the 

Fig. 6  Smart home testbed

Fig. 7  Sound simulation system
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SNR of 0  dB. The robot successful separated each pair 
into two different sounds. These separated sounds were 
used to test our SVM-based VNR algorithm. It shows 
that 95  % of these separated sounds have more than 
70 % of frames that were recognized correctly into voice 
or non-voice frames. Therefore, when the thresholds 
of voice/non-voice decisions are set at 70 %, the voice/
non-voice recognition results of the robot can reach an 
accuracy of 95  % for the whole separated sounds. As 
shown in Figs.  8 and 9, more than 75  % frames of the 
separated voice-sentence sound are voice, and more 
than 72 % frames of the separated washing-hand sound 
are non-voice.

Sound source position estimation
Two speakers are deployed in the living room and the 
kitchen, respectively, and they simultaneously played 
voice sound and non-voice sound at a SNR of 0  dB. 
Figure  10 presents the results of sound positions esti-
mated by the robot using triangulation. The ground truth 
positions of the two speakers are provided by the Opti-
Track system and represented by the red dots in the 2D 
map created by the robot. The red arrow and the cyan 
arrow represent the robot poses in the 2D map at the 
beginning and the end of the triangulation, respectively. 
The estimated positions are represented in the map by 
the blue dot for the non-voice source and the green dot 
for the voice source. The mean absolute error and the 
standard deviation of estimated positions depend on the 
initial distance between the robot and the sound source 
as shown in Fig. 11.

Human‑assisted sound classification
In our experiment, we were able to successfully assist the 
robot in labelling non-voice sounds when the caregiver 
is in another laboratory room. The GUI for sound label-
ling is shown in Fig. 12. Each of the separated non-voice 
sounds was sent to the caregiver in five-second segments 
that were saved into .wav files. They were also played on 

Table 1  Results of sound localization

Distance Errors Direction

0
◦

±45
◦

±90
◦

±135
◦ Sum

0.5 m Mean (°) −0.3 −0.1 −0.2 0.2 −0.2

Std (°) 1.5 2.0 1.9 1.6 1.7

1 m Mean (°) 0.6 −0.8 −0.2 0.5 −0.1

Std (°) 2.2 2.1 2.3 2.0 2.2

2 m Mean (°) 0.1 0.2 −0.1 0.1 −0.3

Std (°) 3.1 2.9 3.0 2.7 2.9

3 m Mean (°) 1.8 0.3 −1.1 −0.9 0.5

Std (°) 4.2 3.6 4.0 3.7 3.9

Fig. 8  Voice/non-voice recognition of separated voice sentences

Fig. 9  Voice/non-voice recognition of separated washing-hand 
sound
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the GUI and the caregiver selected the appropriate labels 
by clicking on the combobox or inputting new labels. 
The labelling results were sent back to the robot using 
JSON format files that can be used in further training. 
Therefore, this application can be used for human–robot 
collaboration in detecting abnormal sounds in home 
environments.

In order to evaluate human-assisted labelling, two 
speakers simultaneously played the voice sound and the 
event sound with the SNRs between the event sound 
and the voice sound at around 0, 3, 6, and 9 dB. In these 

cases, the voice sound is treated as the noise and its 
power is controlled by the audio player software on the 
audio node. The speaker that plays event sounds was 
moved around the testbed based on where the sounds 
should come from, for example boiling-water sound was 
played by the speaker in the kitchen. All 50 event sounds 
in the ASCC SoundLib were played. The robot estimates 
their position, separates, and recognizes them from the 
background of the voice sound, then sends separated 
event sounds to the remote caregiver for labelling. A 
total of 10 graduate students from our laboratory par-
ticipated in this experiment as remote caregivers. The 
experiment consists of two different tests. In the first 
test, only the separated sounds were sent to caregiv-
ers. In the second test, both separated sounds and their 
position estimation were sent to caregivers. As shown 
in Fig. 13, the average accuracy rates of human-assisted 
labelling in the first test are around 75 %, but 98 % in the 
second test due to the position information is attached 
with each sound. Such contextual information provides 
reasonable hints for the caregivers to classify the sound 
events.

Similarly, in order to evaluate autonomous sound 
event classification, two speakers simultaneously played 
the voice sound and the event sound. The SNRs between 
the event sound and the voice sound are approximately 
0, 3, 6, and 9 dB. We tested the SVM-based SER with 20 
classes of sound events (boiling water, frying fries, mak-
ing coffee, washing dishes, teapot whistle, filling water 
glass, washing hands, brushing teeth, soaping hands, 
having shower, washing machine, flushing toilet, drying 
hair, eating snack, glass dropping, door opening, yawn-
ing, coughing, laughing, others). The average accuracy 
rates of sound event recognition with respect to SNRs 
are shown in Fig.  14. In the first experiment, clean 
event sounds in the ASCC SoundLib were used as the 
training data. The testing results without sound sepa-
ration are very poor with average accuracy rates below 
60  %. In the second experiment, the results are better 
when the sound separation is applied. These separated 
event sounds are labelled by the human and then used 
for training in the third experiment. The results are 
improved significantly.

Conclusions
In this research, we proposed and developed human-
assisted sound event recognition for home service robots. 
Besides implementing robot services based on ROS and 
the auditory services based on HARK, three functions 

Fig. 10  Sound position estimation by triangulation

Fig. 11  Results of sound position estimation by triangulation
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were implemented for human-assisted sound event rec-
ognition: sound source position estimation based on tri-
angulation, human-assisted sound event labelling, and 
autonomous sound event recognition. We tested and 
evaluated the above functions. Experimental evaluation 

verified that the remote caregiver and the robot can col-
laborate to facilitate sound event recognition while pro-
tecting human privacy. Overall, this system will help 
develop social intelligence for robot companions. The 
future work will develop algorithms for the robot to 

Fig. 12  The user interface for human labelling of non-voice sounds
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understand and predict the human activities and inten-
tions through sound events.
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