
Ding et al. Robot. Biomim. (2016) 3:6
DOI 10.1186/s40638-016-0038-y

RESEARCH

MicROS‑drt: supporting real‑time
and scalable data distribution in distributed
robotic systems
Bo Ding*, Huaimin Wang, Zedong Fan, Pengfei Zhang and Hui Liu

Abstract 

A primary requirement in distributed robotic software systems is the dissemination of data to all interested collabora-
tive entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-
limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this
aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable
data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support
various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution
service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure.
By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet
the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms
of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of
this work.

Keywords:  Real-time data distribution, Robot software infrastructure, Distributed computing

© 2016 Ding et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Introduction
Consider the following robot-assisted urban search and
rescue (USAR) [1] scenario. A large-scale region should
be explored after an earthquake to analyze the disaster
situation and localize the victims. A team composed of
several human operators, and a group of rescue robots is
sent to execute this task. As shown in Fig. 1, those robots
are tele-operated by the human operators through a wire-
less network with limited bandwidth. The human opera-
tors monitor the behavior of the robots and the video
captured by them, analyze the collected data and guide
the actions of the robots remotely.

This scenario involves a distributed robotic system
in which various kinds of data have to be shared among
participants, such as the video captured by the robots
and the control commands issued by the operators. It
implies some requirements to the data delivery service.

Firstly, the data distribution process should be decoupled
between senders and receivers because the computing
environment is highly dynamic. Secondly, multiple data
streams are found in this scenario, and different data
streams may have different time-related constraints. For
instance, the control commands to the robots issued by
the human operators should be delivered in a high prior-
ity, and the video captured by the robots can be delayed
or even dropped if the network capacity is not adequate.
Moreover, the data distribution scalability in terms of
processing and network bandwidth overhead is a crucial
issue since there are a lot of participants and the network
resources are limited.

The above-mentioned requirements illustrate the con-
cern of this paper, that is, the real-time and scalable data
distribution in distributed robotic systems. Here, the
term “real time” means disseminating data along with
specific time-related constraints [2], such as predictable
latency or a certain priority in data distribution. And the
term “scalable” lays emphasis on the efficiency of this
process, especially when there are a lot of participants.

Open Access

*Correspondence: dingbo@nudt.edu.cn
College of Computer, National University of Defense Technology,
Changsha, Hunan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-016-0038-y&domain=pdf

Page 2 of 8Ding et al. Robot. Biomim. (2016) 3:6

Realizing those two goals in a distributed robotic system
is usually highly dynamic and resource limited.

Data distribution is a basic research topic in distrib-
uted computing, and there has been much progress in
real-time and scalable data distribution in the traditional
distributed computing systems [3]. However, little prior
work has been done to adapt them into robotic settings,
especially to integrate them into robotic software infra-
structure. As shown in the detailed presentation of related
work in “Related work” section, most of the widely
accepted robot software infrastructure, such as the robot
operating system (ROS) [4] and the Open Robot Control
Software (OROCOS) [5], does not support real-time data
distribution across computing nodes yet. This has been
a serious impediment to the development and further
application of distributed robotic systems.

This paper presents the design and implementation of
micROS-drt, a software infrastructure that supports real-
time and scalable data distribution in distributed robotic
systems. A loosely coupled data publish-subscribe model
for robots is proposed firstly. In this model, two kinds
of message topics are defined: general topics without
real-time assurance and real-time topics which support
the fine definition of transport priority, latency budget,
time-based filter and other real-time parameters. To reify
this model, a mature data distribution standard, Object
Management Group (OMG)’s data distribution service
for real-time systems (DDS) [6], is adopted as the founda-
tion of the transport layer of micROS-drt. We adapt and
encapsulate the capability of the underlying DDS middle-
ware to meet the requirements in robotic data distribu-
tion we mentioned earlier. Evaluation results in terms of
scalability, latency jitter and transport priority on a test
bed, as well as the experiment on real robots, show that
micROS-drt can disseminate data scalably with real-time
constraints in distributed robotic systems.

The remainder of this paper is organized as fol-
lows: “Research background” section introduces the
research background. “Real‑time data distribution model

for robots” section proposes a real-time data distribu-
tion model for robots. “MicROS‑drt: architecture and
implementation” section introduces the architecture of
micROS-drt, as well as highlights some implementation
details. “Experiments and evaluation” section focuses on
the experiments on the test bed and real robots. “Related
work” section presents related work.

Background
This section discusses the requirements of distributed
real-time computing in robotic settings firstly and intro-
duces two software entities highly related to our work
(i.e., DDS and ROS).

Robotic distributed real‑time computing
A real-time system is a system whose correctness
depends not only on the logical correctness of the system
but also on the time at which the results are produced [2].
Given that a robot is an autonomous agent that closely
bound to the physical world, the time limit that exists in
the physical space will be directly mapped to the robot
software. Therefore, time-related constraints such as
deadline or priority play significant roles in the logical
correctness of a robot software system. The concept of
robotic distributed real-time computing can be obtained
by applying those real-time constraints to a complex
robot made up of multiple computing nodes or a group
of networked robots. The motivated scenario in “Intro-
duction” section is a typical example of this concept.

The realization of the real-time assurance in a non-
distributed environment mainly depends on appropri-
ate scheduling of various local computing resources, such
as the CPU or I/O devices. In contrast, its assurance in a
distributed computing environment is much more com-
plex. The dependencies among different processors and
network resources should be considered, given that a task
is accomplished by the collaboration of a set of nodes. In
concrete, the realization of real-time properties in a dis-
tributed computing environment can be divided into three
layers (Fig. 2):

Fig. 1  Motivated urban search and rescue scenario

Robo�c
Compu�ng

Nodes

Robo�c
Compu�ng

Nodes
Network

Node-Layer
Real-�me

Node-Layer
Real-�me

Message-Layer
Real-�me

End-to-End Task
Real-�me

Distributed
Robo�c
System

Fig. 2  Node layer, message layer and end-to-end task real-time

Page 3 of 8Ding et al. Robot. Biomim. (2016) 3:6

Layer 1 Node-level real-time is concerned with sched-
uling the local computing resources inside a single
robotic computing node.

Layer 2 Message-level real-time is concerned with
scheduling the resources on the network which con-
nects the robotic computing nodes together. Its goal is to
ensure the message-related real-time properties such as
the latency or priority of data transportation.

Layer 3 End-to-end task real-time includes but not lim-
ited to the former two layers. In addition to those two
layers, the real-time constraints such as task priority and
deadline should be able to be propagated among all par-
ticipant entities to avoid priority inversion [2].

In this paper, we mainly focus on Layer 2, that is, the
timely dissemination of data among the nodes in the
robotic distributed computing.

Data distribution service for real‑time systems
DDS [6] is a message-oriented middleware standard
proposed by OMG. It adopts a topic-based publish-
subscribe communication model, in which the data pro-
ducer (i.e., the publisher) does not send data directly to
its consumers (i.e., the subscribers). Instead, the data are
published into a channel with a specified “topic” name;
all consumers who subscribe this topic receive the data
without knowledge of who published them. The pub-
lisher and the subscriber are decoupled in terms of both
time and space, which is suitable for highly dynamic
environment such as robotic distributed computing
systems.

In contrast to other message-oriented communi-
cation standards such as Advanced Message Queu-
ing Protocol (AMQP) [7], DDS has the following two
prominent features: (1) Quality of Service (QoS) sup-
port. DDS supports the fine control over various QoS
parameters related to time constraints, including
deadline, latency budgets, delivery order and priority
and (2) Scalability. DDS adopts a peer-to-peer model
with a fully decentralized architecture unlike many
message-oriented middleware, which has a central-
ized broker. And the support of UDP/IP multicast also
makes it scalable when the number of subscribers in a
topic is more than one. Moreover, DDS is a mature and
industrialized standard. Both commercial and open-
source DDS middleware have widely been applied
into many real production systems, such as aerospace,
defense, industrial automation and cloud computing
systems [3, 8].

The above-mentioned features are the reasons for our
adoption of the DDS middleware as the foundation of
micROS-drt transportation layer. The adoption of DDS
middleware is the root of the scalability and the real-time
capability of micROS-drt.

Robot operating system
ROS [4] is an open-source robot software infrastructure
being maintained by the Open Source Robotics Founda-
tion (OSRF). It is a meta-operating system, which means
that it runs on top of the existing operating systems such
as Ubuntu. By adding this additional software layer, the
standardized ROS programming model in which the
minimal software unit is named as “package” can be sup-
ported; thus, reuse in robot software development can
be promoted. Another main feature of ROS is that it can
support the distributed message publish-subscribe model
(without real-time assurance), which facilitates the devel-
opment of loosely coupled distributed robot software.

ROS has exerted considerable influence in the robot
community, and a successful ROS-based software eco-
system has been developed. Thousands of reusable soft-
ware packages and numerous tools necessary for robotic
research have been accumulated on top of this platform.
Thus, a major design consideration of micROS-drt is to
maintain compatibility with the existing ROS packages.

Methods
Real‑time data distribution model for robots
We propose a loosely coupled, topic-based data publish-
subscribe model with real-time assurance as the foun-
dation of our work. As shown in Fig. 3, there are two
kinds of topics: general topics without real-time sup-
port and real-time topics. Unlike a general topic, various
time-related QoS parameters can be specified in a real-
time topic, and micROS-drt is expected to provide cor-
responding support while delivering data in this topic.
Reviewing the motivated scenario enables the capture
of the following real-time properties in robotic data
distribution: (1) Different data streams may have differ-
ent transport priorities or desired latency. (2) Since the
network resource is limited, we should provide means to
avoid network congestion, such as automatically drop-
ping the out-of-date messages or time-based message

Real-�me
Topic

General
Topic

Publisher
A1

Publisher
A2

Subscriber
A1

Subscriber
B1

Subscriber
B2

Publisher
B1

Publisher
B2

Priority
Deadline

...

Priority
Deadline

...

Priority
Deadline

...

Fig. 3  Real-time data distribution model for robots

Page 4 of 8Ding et al. Robot. Biomim. (2016) 3:6

filtering. Therefore, four kinds of time-related QoS
parameters are supported in our model:

Transport priority/latency budget
By specifying the message transport priority or its latency
budget, the transport layer of micROS-drt can schedule
its network resources accordingly and decide which one
should be sent firstly. Transport priority/latency budget
is the most useful real-time parameter in many real-time
distributed robotic systems.

Message auto‑discarding
A message can have a lifespan (i.e., valid period). It can be
automatically discarded by micROS-drt when this time
period has expired and the subscriber has not received
it. This feature reduces the network traffic under certain
circumstances. For instance, the out-of-date video frames
can be automatically dropped when a network conges-
tion takes place in the motivated scenario.

Time‑based message filtering
The subscriber can specify a desired time interval of the
message arriving in a topic by introducing a time-based fil-
ter. The messages that arrive ahead of the time interval are
dropped to avoid wasting memory and computing resources.
This filtering is useful when the software needs to handle
periodic messages, such as the data from a specific sensor.

Data transport reliability
When selecting the best-effort transport means instead
of the reliable one, data are delivered without arrival
checks and lost data on the network are not re-transmit-
ted. This parameter is useful when the network resource
is limited and the data reliability is not a major concern.

MicROS‑drt: architecture and implementation
This section provides an overview of micROS-drt, which
includes its major design considerations and high-level
architecture. This section also highlights some imple-
mentation details.

Design considerations
As we have stated, micROS-drt is designed to be a robot
software infrastructure that supports real-time and scal-
able data distribution. A number of design considerations
are accounted for as described below:

1.	 Open source. By adopting the open-source paradigm,
we can take advantage of the community’s force to
improve our work and contribute to the community
effectively as well. The existing achievements in the
open-source society can also be reused with appro-
priate copyright license.

2.	 Usability. DDS has shown its potential in real-time
data distribution. However, an easy target for blame
is its complex, hard-to-use APIs. A design goal
of micROS-drt is to seek an appropriate trade-off
between usability and flexibility. “Real-time data dis-
tribution APIs” section offers more details on this
design consideration.

3.	 Compatibility. As mentioned in “Robot operating
system” section, there have been thousands of reus-
able software packages on top of the ROS platform.
Keeping compatibility with these packages is a major
concern in designing and realizing micROS-drt.

Architecture of micROS‑drt
The architecture of micROS-drt is shown in Fig. 4. The
top layer in this architecture is the API Layer, which
provides the application programming interfaces to the
robot applications. In corresponding to the two kinds
of topics in the data distribution model, there are two
kinds of APIs: the general data pub/sub APIs and the
real-time QoS-enabled APIs. The model layer and the
message layer are responsible for maintaining the data
distribution model and marshaling/demarshaling the
messages, respectively. The bottom layer is the transport
layer, which consists of the negotiable transport proto-
col framework and a set of concrete protocols. The most
important protocol is the DDS one, whose realization is
based on a piece of DDS middleware.

The realization of micROS-drt is based on two open-
source software entities: ROS and the DDS-compliant
middleware. The topic layer and the message layer in
Fig. 4 are an enhancement of the corresponding compo-
nent of ROS, in which the support of the real-time top-
ics is added. The transport layer is a mixture of the DDS
Abstraction and Bridge module, the open-source DDS
middleware and the existing ROS transport protocols.
Theoretically, any realization of the DDS standard can be
used. Currently, micROS-drt support OpenDDS (www.
opendds.org) and OpenSplice DDS (www.opensplice.org).

Real‑time data distribution APIs
The DDS standard, which has been denounced by the
users, has hard-to-use APIs. It introduces more than 20
policies to define the QoS of the data distribution process.
Furthermore, different policy combinations result in dif-
ferent effects. To avoid confusing the users of micROS-
drt with those complex policies, micROS-drt chooses not
to directly expose the DDS APIs directly and introduces
a more practical and simplified real-time data distribu-
tion model (cf. Sect. “Real‑time data distribution model
for robots”) instead. The QoS-enabled APIs of this model
are an extension of the APIs in ROS, which have been
widely accepted by the robotic community. The real-time

http://www.opendds.org
http://www.opendds.org
http://www.opensplice.org

Page 5 of 8Ding et al. Robot. Biomim. (2016) 3:6

parameters are classified into two kinds: The parameters
should be set at the publisher side and the ones should be
set at the subscriber side. The users can specify the param-
eters independently in the ROS-style APIs on both sides or
just use their default values while advertising or subscribing
a topic.

Table 1 presents an example of the real-time data dis-
tribution APIs in micROS-drt. It is the function to adver-
tise a topic with QoS at the publisher side. Basically, it
just adds some time-related parameters to the ROS’s
original advertise() function. In the newly introduced
advertise_qos_ops structure, all time-related QoS param-
eters supported by our real-time model can be selectively
specified. For example, if we want to drop out-of-date
video frames automatically, we can specify the msg_
valid_time field of this structure to an appropriate value
while advertising the video topic.

DDS abstraction and bridge
The implementation of the DDS protocol in micROS-
drt mainly consists of two modules as shown in Fig. 4:
the DDS abstraction/bridge module and the underlying

DDS middleware. The former can be regarded as “glue”
between other parts in micROS-drt and the DDS mid-
dleware. It consists of three sub-modules: (1) DDS capa-
bility abstraction, which encapsulates the capability of
the underlying DDS middleware as well as manages the
lifetime of all DDS-related resources; (2) Data distribu-
tion model mapping, which maps the micROS-drt data
distribution model to the DDS data distribution model,
including the mapping of both topics and QoS param-
eters; and (3) Message tunneling, which encapsulates the
messages that are marshaled by the message layer into a
DDS message at the publisher side and extracts it from
the DDS message at the subscriber side.

A challenge in the design of the DDS abstraction and
bridge module is the efficiency of message handling,
especially on an onboard computer of a robot which may
only have limited resources. To address this issue, we
strictly constrain the capability of the data distribution
model as a subset of the minimum profile of the DDS
standard. Thus, the underlying DDS middleware can be
tailored to fit the needs of micROS-drt.

Keeping compatibility with ROS
An important design consideration of micROS-drt is its
compatibility with thousands of existing ROS packages.
To realize this goal, as shown in “Real‑time data distri-
bution model for robots” section, two kinds of topics are
strictly distinguished in our data distribution model, and
the APIs of the general topic are identical with those in
ROS. Moreover, the realization of existing ROS transport

QoS-enabled APIs

DDS DataSpaceDDS Middleware
OpenDDS, OpenSplice DDS...

micROS applica�ons
with Real-�me QoS

micROS applica�ons
with Real-�me QoS

Legacy ROS
applica�ons
Legacy ROS
applica�ons

General APIs

Topic Management

Message
Queue Message Marshalling

QoS-enabled APIs

Other
Protocols

DDS Abstrac�on and
Bridge

Legacy ROS
packages

micROS applica�ons
with Real-�me QoS

Model Layer

Message Layer

Transport
Layer

Nego�able Protocol Framework

Exis�ng implementa�on in the open source society

micROS-drt code modified from other open source implementa�on

micROS-drt code totally newly developed

Other
Protocols

Other
Protocols

Topic Management

Message
QueueMessage Demarshalling

Nego�able Protocol Framework

DDS Abstrac�on and
Bridge

DDS Middleware
OpenDDS, OpenSplice DDS...

Other
Protocols

Other
Protocols

Other
Protocols

micROS applica�ons
with Real-�me QoS

micROS applica�ons
with Real-�me QoS

micROS applica�ons
with Real-�me QoS

Legacy ROS
applica�ons
Legacy ROS
applica�ons
Legacy ROS

packages

Publisher Subscriber

General APIsAPI Layer

Fig. 4  Overall architecture of micROS-drt

Table 1  An example of real-time API

Function name Overloading parameters

AdevertiseWithQoS (topic_name, queue_size, transport_priority)

(topic_name, queue_size, latency_budget)
(topic_name, queue_size, advertise_qos_ops)

(advertise_ops, advertise_qos_ops)

Page 6 of 8Ding et al. Robot. Biomim. (2016) 3:6

protocols such as TCPROS is retained in micROS-drt.
The ROS negotiable protocol framework is enhanced to
support the negotiation of the newly introduced DDS
protocol. At runtime, TCPROS or other available pro-
tocols are selected transparently for the general topics
instead of the DDS one when the remote node (with an
official ROS) does not support the DDS protocol.

Results and discussion
A set of experiments has been conducted to evaluate
micROS-drt, which include both the experiments on a
dedicated test bed composed of a group of servers and
the experiments on a group of real distributed robots.

Experiments on test bed
The test bed comprises of a group of servers with Intel
Xeon E5-2630v3 CPU, 8 GB RAM and Ubuntu 14.04. A
1000 Mbps LAN connects the servers together. The ver-
sion of OpenDDS in our experiments is 3.1.6, the version
of the OpenSplice DDS middleware is 6.4, and the ver-
sion of ROS is Indigo. The experiments in this subsection
mainly focus on the real-time capability of micROS-drt
and the scalability of our work.

Throughput and scalability
In this experiment, we test the throughput of two config-
urations of micROS-drt (with OpenDDS and OpenSplice
DDS, respectively) as well as the throughput of ROS on
the test bed which has no real-time support. As shown in
Fig. 5a, the “1 publisher to 1 subscriber” model is adopted
(i.e., two robots are simulated), and the message length
is varied from 100 B to 50 KB. The result shows that
micROS-drt is slower than the official ROS to reach the
limitation of the network bandwidth. It is a normal over-
head incurred by both the extra real-time assurance code
and the additional field in the network message.

Although micROS-drt has no advantage over ROS in
terms of throughput, it has a significant advantage in terms
of scalability. To evaluate it, the above throughput experi-
ment is re-conducted with a “1 publisher to n subscribers”
model in which n is a variable from 1 to 4 (i.e., the experi-
ment simulated 5 robots in maximum). Each message is
20 KB in length. Figure 5b shows that the throughput of
ROS drops drastically when the n increases since it does
not support multicast and has to send n copies of the data.
In contrast, the micROS-drt performance is more stable
because the underlying DDS middleware supports the
UDP/IP multicast. Therefore, only one copy of the data is
delivered regardless of the number of subscribers.

Latency and jitter
Latency is an important measurement to evaluate the
performance of data distribution. This experiment

evaluates the message round-trip latency in micROS-drt
with OpenSplice DDS, micROS-drt with OpenDDS and
ROS. Each message is 100 KB in length, and 5000 mes-
sages are sent continuously. As shown in Fig. 5c, although
the average latency in the three configuration/products is
about the same, the latency standard deviation is totally
different. The ROS latency without real-time support
has a large deviation, and the latencies in the two con-
figurations of micROS-drt are both significantly low.
The snapshot of the latencies of 1000 messages in Fig. 5d
also shows this trend. It indicates that the behavior of
micROS-drt is more predictable, which is an important
property of the real-time software.

Transport priority
This experiment validates a major real-time capabil-
ity of micROS-drt, that is, the message transport prior-
ity management. Two servers are connected by a virtual
network over the 3G cellular network. Three topics are
advertised with different priorities at the publisher side,
and each of them sends messages with 5 KB length con-
tinuously. Sending many messages of this kind in a short
time window results in network congestion, especially
with a cellular network that has limited bandwidth. The
experiment is terminated when 300 messages have been
received at the subscriber side, and the arrived messages
in each topic are counted. Figure 5e shows that with
real-time assurance support, the topic with high priority
delivers 173 messages and the low priority one delivers
only 17 messages successfully. As a comparison, in the
same experiment on ROS which has no transport prior-
ity support, the arrived messages are distributed evenly
among those three topics.

Experiments on real robots
MicROS-drt is the software infrastructure of the dis-
tributed robotic research platform in our laboratory.
Figure 6a shows a compact-size three-wheel robots in
this platform, which we designed mostly based on the
commercial off-the-shelf hardware. The onboard com-
puter is an ODROID XU3, a credit card-size embedded
development board with a Samsung 1.8GHz ARM-based
CPU. Other parts on this robot including a mbed micro-
controller, two brush-less motors with encoders, an
highly integrated IMU, sonar and IR sensors, and an
optional general or RGB-D camera.

To maximally exploit the science research and educa-
tion potential of this robot, micROS-drt is ported to it,
and a software stack is constructed for this robot mainly
based on existing ROS packages. With thousands of
existing ROS packages, distributed or swarm robotic
experiment settings (e.g., multi-robot coverage path
planning [9]) can be quickly constructed. Figure 6b shows

Page 7 of 8Ding et al. Robot. Biomim. (2016) 3:6

the throughput test results between two robots which are
connected by an 802.11n Wi-Fi wireless network.

Related work
In the early days, many robotic software infrastructures
adopt the real-time Common Object Broker Architec-
ture (CORBA) [10] to support robot cooperation or tele-
operation, such as the work in [11] and [12]. Real-time
CORBA provides a solution on real-time distributed
computing. However, it is based on a tightly coupled cli-
ent/server model. In contrast, our work adopts a loosely
coupled publish-subscribe model, which is more suit-
able for dynamic scenarios. Another similar work is the
Dynamic Data eXchange (DDX) project [13], which ena-
bles runtime data sharing for distributed robotic systems.
DDX is realized through an efficient shared memory
mechanism. However, this centralized paradigm hinders
the scalability of the data distribution process. In con-
trast, the DDS technology we adopt has a fully decentral-
ized architecture.

The use of publish-subscribe paradigm in robotic data
distribution has recently been given increasing attention.
The message transfer mechanism in ROS [4] is a typical
example, which is without real-time support. Attempts

Fig. 5  Experiment results on the test bed. a Throughput with different message lengths. b Throughput scalability. c Average latency and its jitter.
d A snapshot of latency test. e Transport priority

Fig. 6  Experiment on the real robots. a MicROS-drt test robot (ARM
CPU and Wi-Fi network). b Throughput on the test robots

Page 8 of 8Ding et al. Robot. Biomim. (2016) 3:6

have been made to integrate DDS into robot software
infrastructure. In [14], DDS has been adopted to improve
the performance of RoboComp, a robot software frame-
work that originally relies on the Internet Communica-
tions Engine (ICE). A QoS-enabled middleware, Nerve,
intended for networked robots and based on DDS is
introduced in [15]. Since ROS has been widely accepted
by the robotic community, there are also some similar
attempts. In [16], the ROS–DDS proxy is introduced to
support the interaction of multiple robots. It validates the
feasibility to make ROS and DDS work together. How-
ever, the proxy realization is message specific. In other
words, a corresponding proxy has to be developed manu-
ally for each kind of message. In contrast, our solution
is general for all messages, and the DDS middleware is
fully transparent to the upper layer applications. Another
undertaking effort is ROS 2.0 [17], the next big step of
ROS, which is expected to be released in the near future.
It also adopts DDS as its underlying transport means.
However, according to the information that has been dis-
closed such as its preview APIs [18], the real-time assur-
ance in distributed computing environment is not its
major concern.

Conclusion
This paper presents micROS-drt, a robot software infra-
structure, which supports real-time and scalable data dis-
tribution in distributed robotic computing. It is based on
a loosely coupled data publish-subscribe model that sup-
ports both the topics with real-time QoS and the ones
without real-time support. To reify this model, micROS-
drt adopts a mature real-time data distribution standard,
the OMG’s DDS, as its underlying transport means. A set
of experiments on both the dedicated test bed and the real
robots has validated the effectiveness of its real-time assur-
ance capability and its scalability. In our future work, we
will enhance micROS-drt to support the real-time prop-
erty propagation from network resources to local comput-
ing resources.

Authors’ contributions
BD and HW designed the architecture of micROS-drt as well as participated in
the implementation of this work. ZF, PZ and LH participated in the implemen-
tation of micROS-drt. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the special program for the applied basic research
of National University of Defense Technology (No. ZDYYJCYJ20140601) and
the National Natural Science Foundation of China (No. 61202117).

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2016 Accepted: 18 April 2016

References
	1.	 Liu Y, Nejat G. Robotic urban search and rescue: a survey from the control

perspective. J Intell Robot Syst. 2013;72(2):147–65.
	2.	 Stankovic JA. Real-time computing. Byte. 1992;17(8):155–62.
	3.	 Pérez H, Gutiérrez JJ. A survey on standards for real-time distribution mid-

dleware. ACM Comput Surv (CSUR). 2014;46(4):49.
	4.	 Quigley M, Conley K, Gerkey B, et al. ROS: an open-source robot operat-

ing System. In: ICRA workshop on open source software, 2009.
	5.	 Bruyninckx H. OROCOS: design and implementation of a robot control

software framework. In: Proceedings of IEEE International Conference on
Robotics and Automation, 2002.

	6.	 Pardo-Castellote G. OMG data-distribution service: architectural overview.
In: Proceedings of international conference on distributed computing
systems, 2003.

	7.	 O’Hara J. Toward a commodity enterprise middleware. Queue.
2007;5(4):48–55.

	8.	 Hoffert J, Schmidt DC, Gokhale A. Adapting distributed real-time and
embedded pub/sub middleware for cloud computing environments.
In: Proceedings of ACM/IFIP/USENIX international conference on mid-
dleware, 2010.

	9.	 Galceran E, Carreras M. A survey on coverage path planning for robotics.
Robot Auton Syst. 2013;61(12):1258–76.

	10.	 Fay-Wolfe V, DiPippo LC, Cooper G, et al. Real-time CORBA. IEEE Trans
Parallel Distrib Syst. 2000;11(10):1073–89.

	11.	 Song I, Karray F, Guedea F. A distributed real-time system framework
design for multi-robot cooperative systems using real-time CORBA. In:
Proceedings of IEEE international symposium on intelligent control, 2003.

	12.	 Yoo J, Kim S, Hong S. The robot software communications architecture
(RSCA): QoS-aware middleware for networked service robots. In: Proceed-
ings of SICE-ICASE international joint conference, 2006.

	13.	 Corke P, Sikka P, Roberts J, et al. DDX: a distributed software architecture
for robotic systems. In: Proceedings of Australasian conference on robot-
ics & automation, 2004.

	14.	 Martínez J, Romero-Garcés A, Manso L, et al. Improving a robotics
framework with real-time and high-performance features. In: Simulation,
modeling, and programming for autonomous robots, Springer Berlin
Heidelberg, 2010, p. 263–74.

	15.	 Cruz JM, Romero-Garcés A, Rubio JPB, et al. A DDS-based middleware for
quality-of-service and high-performance networked robotics. Concurr
Comput: Pract Exp. 2012;24(16):1940–52.

	16.	 Bich M, Hartanto R, Kasperski S, et al. Towards coordinated multirobot
missions for lunar sample collection in an unknown environment. J Field
Robot. 2014;31(1):35–74.

	17.	 ROS 2.0. https://github.com/ros2.
	18.	 Thomas D, Woodall W, Fernandez E. ROS 2.0: developer preview. In: ROS

developer conference, 2014.

https://github.com/ros2

	MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems
	Abstract
	Introduction
	Background
	Robotic distributed real-time computing
	Data distribution service for real-time systems
	Robot operating system

	Methods
	Real-time data distribution model for robots
	Transport prioritylatency budget
	Message auto-discarding
	Time-based message filtering
	Data transport reliability

	MicROS-drt: architecture and implementation
	Design considerations
	Architecture of micROS-drt
	Real-time data distribution APIs
	DDS abstraction and bridge
	Keeping compatibility with ROS

	Results and discussion
	Experiments on test bed
	Throughput and scalability
	Latency and jitter
	Transport priority

	Experiments on real robots

	Related work
	Conclusion
	Authors’ contributions
	References

