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Abstract 

This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of 
significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision 
guidance system is presented with details on system architecture and workflow. The Chan–Vese detection algorithm 
is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive 
scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor 
experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, 
onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of 
the published ROS-based detection algorithm.
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Background
In the past decades, unmanned aerial vehicles (UAVs) 
have been widely used in many fields. The applications 
include environmental monitoring, planting and farm-
ing, remote observation and earthquake rescue [1]. Most 
attention is generally paid on fixed-wing aerial vehicle 
recovery because of relatively higher risk involved during 
the landing phase. Many practical applications showed 
that recovery is the most challenging and hazardous 
period of UAV flights [2]. Developing autonomous land-
ing technologies has already been an important trend of 
runway-mode takeoff-and-landing UAV systems. It aims 
at reducing personnel dependency and workload and 
meanwhile improving adaptability and reliability of fly-
ing vehicles recovery. The success of flying aircraft navi-
gation is mostly achieved by using onboard conventional 
sensors, such as global positioning system (GPS), inertial 
measurement unit (IMU) and magnetometer. However, 
autonomous landing task that requires higher accuracy in 
localization is still not achievable solely by these onboard 
sensors [3, 4].

Under such circumstances, a ground vision guidance 
scheme was proposed and developed [5–11]. The ground 
system possesses stronger computation resources and 
saves cost by implementing each set for a runway rather 
than individual vehicles. Moreover, image processing on 
the ground-captured images is more convenient than that 
on the onboard images with complicated backgrounds.

Runway landing and taxiing has been a kernel recycling 
mode of medium and/or large fixed-wing unmanned 
aerial vehicles. Vision-based localization and guidance 
has drawn more and more attention in the field of UAV 
autonomous takeoff and landing [12]. Hereafter, a ground 
stereo vision guidance system has been proposed and 
presented [7–9]. As shown in Fig. 1, the binocular cam-
eras are located symmetrically on both sides of the run-
way to capture sequential images of the approaching and 
landing unmanned aircrafts. The ground system with 
stronger processing abilities calculates the spatial coor-
dinates by integrating calibration, detection and locali-
zation steps. Eventually, the ground system sends the 
coordinates into the onboard autopilot via the specified 
data link. In our previous works [6–9], both corner-based 
and skeleton-based algorithms were employed into the 
flying object detection on the ground-captured sequen-
tial images. As for the corner-based methods, Harris [13], 

Open Access

*Correspondence:  t.j.hu@nudt.edu.cn 
College of Mechatronics and Automation, National University of Defense 
Technology, Changsha 410073, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-016-0046-y&domain=pdf


Page 2 of 9Hu et al. Robot. Biomim.  (2016) 3:14 

SIFT [14], SURF [15], ORB [16], FAST [17] and BRISK 
[18] corner detectors are, respectively, tested with the 
dataset. As for the skeleton-based methods, level set, 
Canny and Chan–Vese [19] are generally employed into 
the edge extraction.

In this study, a synthetic data-driven scheme is devel-
oped and presented for target detection algorithm design, 
implementation, testing, evaluation and parameter tun-
ing. The Chan–Vese [19] approach is demonstrated as a 
case study. The Chan–Vese object detection algorithm is 
to be implemented in the robot operating system (ROS) 
platform for general multi-user usages, open-source sup-
port and inheritable development. The dataset of stereo 
sequential images is constructed to evaluate detection 
performance and to tune appropriate parameters as 
well. The ROS package is developed and published on 
the open-source github Web site. The comparisons are 
made between the Chan–Vese automatic detection and 
the manual detection based on the collected dataset. The 
results show that the ROS-based Chan–Vese detection 
approach effectively extracts the aircraft coordinates with 
satisfied localization accuracy.

System architecture and workflow
Architecture of ground stereo vision system
Aerial vehicles autonomous landing on the runway is 
usually composed of three stages: approaching, descend-
ing and taxiing. The onboard navigation system guides 
the aircraft into the field of view of stereo cameras. Once 

the aircraft target is detected, the spatial coordinates are 
calculated by using the stereo vision localization algo-
rithm. The data link connects the flying aircraft and the 
ground system and transfers the vision-based localized 
position onto the onboard autopilot. Detailed process 
and scenarios are presented in Fig. 1.

Stereo localization workflow
The ground stereo vision system consists of two inde-
pendent modules. Each module is equipped with one 
camera on an independent pan–tilt unit. The two mod-
ules are independently connected to the computer. Land-
ing image sequences are obtained by the symmetrically 
located two cameras on both sides of the runway. The 
pan–tilt units are automatically driven to keep the flying 
aircraft around the center of the vision field. The pan-
and-tilt angles are fed back to the computer for calculat-
ing the spatial coordinates.

The ground detection component usually works 
through the descending and taxiing stages until the 
engine or the power is turned off. By using two cameras, 
stereo vision has a function similar to human eyes and 
can obtain 3D information on the targets. Stereo vision 
guidance system mainly consists of image capture, air-
craft detection and tracking, and localization. As shown 
in Fig. 2, the detection algorithm extracts a pair of pixel 
points (xl, yl) and (xr, yr) from the captured sequential 
images, while the localization algorithm integrates the 
calibration data, a pair of detected pixel points and the 

Fig. 1  Architecture and scenarios of the ground stereo vision guidance and localization system. The binocular cameras are located symmetrically 
on both sides of the runway to capture sequential images of the approaching and landing unmanned vehicles. The ground system with stronger 
processing abilities calculates the spatial localization and sends the coordinates onto the onboard autopilot (adopted from Tang and Hu et al. [8, 9])
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feedback angles (Pl, Tl) and (Pr, Tr) of pan–tilt units into 
calculating the spatial coordinates at each time step. 
Mathematical models of the stereo localization were 
developed and illustrated in [9] at length.

ROS‑based detection algorithm
The ground stereo vision guidance system enables the 
UAV autonomy during takeoff-and-landing phases. As 
shown in Fig.  2, target detection is the first step and a 
kernel factor in the ground vision-based guidance. The 
detection algorithm aims at finding the flying vehicle’s 
coordinates from the captured sequential images. In the 
previous works [6–9], both corner-based and skeleton-
based methods were employed into target detection for 
the ground stereo vision system. Typically, a skeleton-
featured detection algorithm, namely Chan–Vese model, 
is considered and implemented in the ROS environ-
ment. Such an open-source implementation definitely 
draws attentions and technical supports from interested 
researchers. Advanced or newly developed detection 
algorithms are more smoothly fused into the ground ste-
reo system.

Skeleton‑featured detection algorithm
The skeleton or edge is an important feature in images. 
The Chan–Vese model [19] is a geometry-driven active 
contour model that fuses both curve evolution and level 
set theories. To some extent, it can be expressed as zero 
level set of level set function indirectly.

Since the skeleton is a scale-, gray- and rotation-invar-
iant feature, the Chan–Vese model-based detection 
possesses adaptability to object geometry or topology 
evolving. Therefore, the Chan–Vese detection is poten-
tially suitable for all the ground vision-captured aircraft 
images, regardless of approaching, landing and taxiing on 
the runway.

The employed Chan–Vese approach is a kind of geo-
metric active contour models. Although improper ini-
tial outline may lead to local minimum, the continuous 
movement of cooperative target can figure it out by 
estimating target’s position according to target move-
ment characters. Combining target’s shape transforma-
tions with movement characters greatly improves the 
object detection accuracy. At the same time, the accuracy 
and efficiency of extraction will be improved with the 

Fig. 2  Algorithm workflow of the ground stereo vision guidance and localization system. Stereo vision guidance system mainly consists of image 
capture, aircraft detection and tracking, and localization. Detection algorithm transfers the captured images into a pair of pixel points standing 
for the extracted object positions (xl, yl) and (xr, yr). Localization algorithm generates the spatial coordinates by fusing the calibration data, a pair of 
detected pixel points and the feedback angles of pan–tilt units
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development of image segmentation based on the theory 
of geometric active contour model.

Level set method increases the problem’s dimension 
to be higher. For example, a plane curve C is implicitly 
expressed as a same-value curve of three-dimensional 
continuous functional surface ϕ(x, y, t), which is called 
level set function.

The Chan–Vese image segmentation is presented as 
follows. At first, a regular closed curve is given as the 
assumed original boundary. The closed curve iteratively 
evolves by numerically solving partial differential equa-
tions. Finally, it will converge to the target boundary.

The energy function FMS(C) of the Chan–Vese model is 
defined as:

where C is the ranging closed curve and u is matrix of the 
image. μ and v are coefficients. c1 and c2 are average pixel 
intensity values of inside and outside regions of the closed 
curve, respectively. Therefore, (u − c1)2 and (u − c2)2 can 
be treated as the pixel intensity values’ variance matrixes 
of inside and outside region. L(C) is the length of closed 
curve. A closed curve C needs to be found to minimize 
the energy function FMS(C) which is the final contour of 
segmentation.

Calculate a closed curve which minimizes the value of 
FMS(C) with the level set method. The level set function 
ϕ(x, y) can be written as:

where d is the minimal distance between point (x0, y0) 
and the contour of closed curve C. The zero level set 
function which is the closed curve C can be written as:

The Euler–Lagrange function of Chan–Vese model can 
be expressed as:

where ϕ0(x, y) is the initial level set function which is 
usually set to be a circle in consideration of computation 
complexity of parameter d. ϕ(x, y) evolves as time t pass. 
Iterations exit until ∂ϕ/∂t is closed to 0.
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ROS‑based implementation
The skeleton-featured Chan–Vese detection algorithm is 
implemented in the ROS indigo version and published as 
an open-source ROS package. Figure 3 presents the ROS 
node connection and topic communication topology 
when the ground stereo guidance system works.

As for the ROS-based implemented localization of 
flying aircrafts, the package is composed of two main 
software modules, namely /DetectionCV and /Localization 
in Fig.  3. The ROS node /DetectionCV automatically 
detects the pixel coordinate of the flying aerial vehicle 
within the captured sequential images, while the other 
node /Localization calculates the three-dimensional spa-
tial coordinate by using the calibration data and the 
detected image coordinates. The /left/camera1394_node 
and /right/camera1394_node nodes provide the raw 
images captured by the left and right cameras. The 
/left/PTU/pose  and /right/PTU/pose nodes provide the 
raw present states of the left and right PTU devices. The 
open-source detection package can be downloaded from 
the github Web site. Once appropriately configured in the 
ROS environments, the Chan–Vese detection package is 
run as the following steps.

Step 1: Run the multiple cameras driver to publish the 
captured images, and find the ports of cameras (port1 
and port2). 

source devel/setup.bash
rosrun PTU_Altitude PTU_Altitude

Step 2: Run the PTU states publishing nodes. 

source devel/setup.bash
rosrun trajectory_create trajectory_create

Step 3: Run the Chan–Vese detection node. 

lsusb
source devel/setup.bash
sudo chmod 777 /dev/bus/usb/port1
sudo chmod 777 /dev/bus/usb/port2
roslaunch camera1394 multicamera_example_1.launch

Step 4: Run the stereo vision localization node. 

source devel/setup.bash
rosrun DetectionCV DetectionCV
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Experiments and discussion
The outdoor flight experiments are performed to collect 
the images, D-GPS data for the algorithm testing and 
parameter tuning. Simultaneously, the experiments dem-
onstrate the usage and feasibility of the developed open-
source ROS package.

Algorithm demonstration
According to the skeleton-featured detection workflow, 
one frame of landing images is chosen to demonstrate 
how the processing runs. Segmentation procedures 
and results with the Chan–Vese algorithm are shown in 
Fig.  4. The S-channel component is extracted from the 
original image and equally histogram then. Segmentation 
is iteratively made on the transformed image. Images at 
typical iterations are given in the figure, e.g., the first and 
20th iteration.

Workflow of data‑driven detection
In this study, a synthetic data-driven scheme is proposed 
to promote flying object detection algorithms. We con-
centrate on target checking and tracking on the UAV 
landing image sequences from the ground stereo vision 

guidance system. A manual interactive system is estab-
lished to collect the aircraft coordinates in the sequential 
images, and moreover, datasets are constructed for train-
ing and evaluating various detection algorithms.

In the past works, a large number of sequential landing 
images have been captured in the runway-mode experi-
mental flights [6, 7, 9]. The corresponding PTU, D-GPS 
and onboard sensor data are simultaneously recorded 
then. These data are usually obtained by human-in-loop 
or GPS-guided landing experiments, but they facilitate 
algorithm design and testing, performance evaluation, 
scheme comparison and so on. Figure  5 demonstrates 
the interactive system functions, such as image loading, 
zooming in and out, coordinates extracting, attribute reg-
istering, mistake correcting, dataset auto-saving and ana-
lyzing. Eventually, the evaluation dataset is constructed 
by multiple volunteers’ operations on the sequential 
images. Stochastic analysis methods are designed to 
generate the reference coordinates for evaluation on 
various automatic detection algorithms. Within the data-
driven scheme, the manually detected pixel coordinates 
of sequential stereo images are recorded and classified 
in terms of landing experiments. As shown in Fig. 6, all 

Fig. 3  Logical and informational graph of the ROS-based detector. The green nodes represent the hardware PTUs and cameras in the ground 
system. The green nodes of /DetectionCV  and /Localization are kernel software modules. The input-and-output mapping of each node is given as 
well
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the dotted points are transformed into the original image 
coordinate.

Localization effectiveness
Accuracy plays an important role in flying aircraft locali-
zation particularly within the autonomous landing stage. 
In the flight experiments, the D-GPS, manual detection 
and Chan-Vese automatic detection results are recorded, 
respectively. As shown in Fig.  7, the Chan–Vese detec-
tion algorithm possesses a mostly equivalent perfor-
mance with the manual detection. Over 100 flights have 
been conducted in the Changsha Moon Island since 
the ground guidance prototype was implemented [9]. 
Three-mode localization trajectories are simultane-
ously exhibited in two specified representative cases. 
At the approaching stage starting from ‘A,’ localization 
accuracy is no obvious difference between all the three 

modes. Sequential images are captured with the blue or 
gray sky as the background, so the aircraft detection is 
much more accurate. When the aircraft approaches ‘B,’ 
the trees arise in the background and the detection is to 
some extent not as accurate as before. At the descend-
ing stage of ‘C,’ the maximum localization errors arise 
because the aircraft partially flies out of the camera 
view and some parts cannot be included in the captured 
images. At the taxiing stage of ‘D,’ higher accuracy is 
achieved again.

Real‑time feature analysis
The real-time property is another key factor in practi-
cal applications. In particular, it is much cared since the 
Chan–Vese segmentation is iteration-mode numeri-
cal solution on partial differential equations. As shown 
in Table 1, the control computer is with 2.80 GHz CPU 
and 6GB RAM, and the captured image size is 720 × 576. 
The time cost is listed in Table 1. The time-consuming of 
the Chan–Vese detection algorithm is 157 ± 10 ms. Such 
real-time feature is hardly acceptable for high-speed 
unmanned aircrafts, so other approaches are considered 
for detection speedup, such as CPU-GPU hybrid process-
ing, predictive region of interest (ROI) and scale-space 
framework. These approaches shall be concentrated on 
for potential applications. 

Concluding remarks
Ground vision-aided guidance is demonstrated as an 
effective approach for runway-mode UAV autonomous 
landing. Compared with the onboard scheme, the devel-
oped ground vision system has the necessary processing 
power and greater computation capacity and further-
more rids the need for individual aircrafts to carry such 
equipment. Truth be told, the ground vision system has 
potential pitfalls as well. It has a limited distance and 
scope to make the first catch of flying aircrafts and is lim-
ited to weather conditions significantly. Furthermore, the 
instrument landing system (ILS) has already been around 
for decades of years and is deployed in almost every air-
port and manned airplane. That system with incredible 
accuracy is reported precise enough to allow landings in 
essentially zero visibility. Generally, its practical applica-
tion is restricted to commercial passenger airports for the 
expensive consumption, inconvenient deployment and 
professional operations. The ground vision-based system 
can be modularly assembled and practically deployed for 
low-cost unmanned aircrafts. From the engineering point 
of view, the ground system can not only be developed as 
an effective supplement to the ILS in the high-level air-
ports, but also make low-cost substitutes of ILS within 
specified scenarios.

Fig. 4  Object detection process of one selected image. a Original 
image, b S-channel component, c histogram equal image, d segmen-
tation with the green contour as φ(x, y) = 0, e image with the first 
iteration, f image with the 20 iterations, g focused image within the 
RED rectangle and h detected pixel point shown at the original image



Page 7 of 9Hu et al. Robot. Biomim.  (2016) 3:14 

In this article, open-source ROS implementation is 
employed into the ground stereo guidance system. This 
open scheme definitely enriches technical innovations 
from numerous interested researchers. Newly developed 
detection algorithms can be conveniently employed into 
the flying object detection. One representative of the 
Chan–Vese approach is considered and demonstrated in 
the ROS indigo version and published in the github Web 

site. The detection approach aims at locating the flying 
aircraft coordinates in the captured sequential images 
of the ground stereo vision guidance system. The run-
ning operators are given at length in the ROS-supported 
platform. Meanwhile, a data-driven interactive scheme 
is constructed since object detection in cluttered scenes 
requires large image collections with ground truth labels 
[20, 21]. Collection and use of annotated images play 

Fig. 5  Workflow of data-driven detection on the landing sequential images. An interactive system enables manual collection of the aircraft coordi-
nates in the image sequences. The constructed dataset is suitable for training and evaluating various automatic detection algorithms
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an important role in training and evaluation of detec-
tion approaches. Experimental comparisons are made by 
using the collected datasets, including the stereo sequen-
tial images, PTU angles, D-GPS positions and other fly-
ing states from onboard sensors. Results validate the 
effectiveness and generality of the published Chan–Vese 
detection ROS indigo package.

The open-source mode follows the present tendency in 
this field to draw more attentions, inspiration and con-
tribution from online users. Furthermore, the annotated 
images and spatial extents should make positive effects 
on detection algorithm training and parameter optimiza-
tion in the following researches.
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