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Abstract 

This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A 
detailed description of the robotic platform is first provided, and the suitability for deployment of each of the cur-
rent state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar 
Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is 
deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local 
path planning algorithms.
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Background
Robotic systems with the ability to reconfigure their mor-
phologies in response to the application scenario display 
great potential with their versatility, fault tolerance, and 
efficiency for a variety of rugged missions in real world. A 
few works on reconfigurable robotics are [1–5].

Many reconfigurable robotic platforms are based on 
bio-inspired or biomimetic designs, which are based 
on naturally evolving mechanisms. A focus of reconfig-
urable robotic research has been the development of a 
bio-inspired platform which displays both rolling and 
crawling abilities, leading to the robotic platform known 
as BiLBIQ [6]. However, these efforts had been focused 
completely on mechanism design with almost no effort 
associated with perception or autonomous functionality.

While remote-controlled robot mechanisms have suf-
ficed for most applications encountered thus far, emerg-
ing applications in the fields of surveillance and security 
necessitate the development of robots possessing a meas-
ure of autonomy and intelligence, including basic func-
tionality such as mapping and local path planning. 

Unfortunately, integrating complex reconfigurable design 
mechanisms with perception introduces multiple new 
research challenges.

Recently, a family of reconfigurable robotic platforms 
(i.e., Scorpio) capable of crawling and rolling locomotion 
has been developed. These robots mimic the morphology 
of a huntsman spider that can transform between crawl-
ing and rolling by reconfiguring their legs.

The Scorpio is in development for applications pertain-
ing to surveillance and security; thus, the primary focus 
has been the reduction in size of the platform, as well as 
improvement of power efficiency of the overall system. 
Furthermore, the changing requirements of the plat-
form have resulted in a rapid evolution of five stages of 
the robotic platform in 2 years. In order to adhere to both 
these conditions, the Arduino Mini Pro 328 has been 
chosen as the onboard processing unit allowing for rapid 
prototyping of applications.

A customized ultrasonic sensor is designed for the sys-
tem due to the relative computational inexpensiveness in 
processing the data, as well as to reduce power consump-
tion. The customized sensor allows greater control of the 
sensor to restrict environmental observations to data that 
is relevant to the successful completion of the mission.

Previous works based on the Scorpio focus on the 
development of an efficient rolling controller [7, 8] and 

Open Access

*Correspondence:  akshay_rao@sutd.edu.sg 
1 Temasek Laboratory, Singapore University of Technology and Design, 08 
Somapah Road, Singapore 487372, Singapore
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-016-0043-1&domain=pdf


Page 2 of 13Rao et al. Robot. Biomim.  (2016) 3:12 

the formulation and implementation of an intelligent 
vision-based terrain perception module [9]. This paper 
attempts to add to the suite of autonomous functions for 
the Scorpio by developing an efficient obstacle avoidance 
algorithm in crawling mode.

One of the desired applications for the Scorpio plat-
form has been the rapid traversal of unknown, unstruc-
tured terrain in a fixed period of time. A wall-following 
algorithm [10] was first implemented as a proof-of-con-
cept obstacle avoidance algorithm, using the hardware 
described above. Despite its ability to traverse a room 
and find an exit, it was an inefficient algorithm, leading to 
oscillations in certain scenarios.

Conventional local path planning algorithms [11–22] 
assume the use of a robotic platform with Ackermann 
steering model, as well as highly accurate, rapidly scan-
ning range sensors producing highly dense data. Since 
the Scorpio robot is unable to satisfy the assumptions for 
both the proprioceptive and the exteroceptive models, 
design of a local path planning algorithm that better fits 
the robot is necessitated.

In this paper, we present the design and develop-
ment of a local path planning algorithm based on the 
Enhanced Vector Field Histogram (VPH+) and inspired 
by the inherent constraint due to the choice of sensor 
and platform. The remainder of the paper is organized as 
follows: The “Design of the robot” section describes the 
design specification of the robotic platform. Thereafter, 
in “Methods” section, we explain the design of the robot, 
sensor, and algorithm. The “Formulation” section derives 
the Constrained VPH+ algorithm from the VPH+ algo-
rithm, while “Implementation” section provides a pseu-
docode for the algorithm, along with a discussion of 
some issues faced in implementing the algorithm on the 
Scorpio. The results are described in “Results” section. 
Finally, “Conclusions and future work” section concludes 
the paper and suggests avenues of future research.

Huntsman spider
The Scorpio robot is inspired by the Cebrennus rechen-
bergi, a species of huntsman spider. This species is able to 
travel using both crawling and rolling motion, as shown 
in Fig. 1. The rolling locomotion of the huntsman spider 
was discovered by Ingo Rechenberg from TU Berlin [6]. 
The habitat of Cebrennus rechenbergi is the sand dunes 
of the Erg Chebbi desert in Southern Morocco on the 
boundary of the Sahara Desert.

While the spider normally crawls on eight legs similar 
to other species of spiders, when provoked or threat-
ened by an external stimulus, it can escape by doubling 
its normal crawling speed using forward or backward 
flips with the use of its eight legs simultaneously, simi-
lar to acrobatic flic-flac movements used by gymnasts. 

Most notably, the spider turns somersaults to move 
independent of surrounding conditions. As a result, 
it does not need a slope to initiate the rolling process 
using the gravitational force. It also does not need to 
perform a run-up or a start-up gesture to trigger the 
rolling locomotion.

The main aim of the huntsman spider in deploying roll-
ing mechanism as observed so far seems to maximize 
the displacement of the spider to escape from threaten-
ing circumstances, or when meeting a conspecific. So far, 
the spider has not been observed to perform any other 
functions in rolling mode, such as changing positions and 
hunting for prey.

Local path planning
Local path planning and obstacle avoidance have been 
the subject of a great quantum of research in the robotics 
research community [11–22]. Initial papers focussed on 
development of techniques for perception and mapping 
using noisy sonar sensors [11–13].

An environment representation technique was arrived 
at in [12] known as the occupancy grid map, which is still 
used as a map representation technique in state-of-the-
art algorithms. Elfes [13] first formulated the use of occu-
pancy grids for navigation and mobile robot perception.

Borenstein and Koren [14] developed a local path plan-
ning algorithm known as Virtual Force Field (VFF), using 
occupancy grids for obstacle representation and potential 
fields [23] for navigation. The VFF algorithm employed 
the use of repelling force fields around obstacles and an 
attracting force in the direction of the target. The sim-
plicity of the formulation made it an attractive path plan-
ning algorithm in the robotics research community.

Mathematical and practical drawbacks of the VFF were 
discovered and analyzed in [15]. While the occupancy 
grid method was a computationally inexpensive way to 
generate an approximate representation of the map, it 
was unable to compensate for the contradiction between 
the complexity and roughness of the grids, rendering 
it unsuitable for use with a low precision sensor like an 
ultrasonic range sensor. A tendency of the algorithm to 
get trapped in local minima was also discovered in sce-
narios where the goal was behind an obstacle.

In response to this problem, the Vector Field Histo-
gram (VFH) was first introduced in [15] and further 
expanded and analyzed in [16, 17]. The VFH uses a two-
dimensional Cartesian grid as a representative world 
model, while local environmental data are represented 
as a one-dimensional polar histogram around the robot. 
Each section of the polar histogram represents the obsta-
cle density in that direction. The algorithm then chooses 
a direction which contains the best trade-off between the 
obstacle density and the goal direction. A subsequent 
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step provided appropriate steering commands to gener-
ate motion in the desired direction.

Extensive testing and implementation of the VFH 
resulted in the discovery that the VFH algorithm does 
not take into account the vehicle kinematics, resulting in 
unrealistic and impractical inputs provided to the robot. 
In response, the Dynamic Window Planning approach 
was postulated in [18] which was specifically designed to 
account for the limited velocities and accelerations inher-
ent in wheeled mobile robots.

The VFH was also improved, and its drawbacks addressed 
in the VFH+ algorithm [19]. The VFH+ algorithm added 
two extra stages to the VFH algorithm. The VFH algorithm 
also displayed the tendency of creating oscillations in envi-
ronments with multiple narrow openings due to the sharp 
thresholding near the entrances. The first additional stage 
in the VFH+ algorithm was used to provide a hysteresis 
function between two threshold values, to reduce the oscil-
lations and produce a smoother trajectory.

The next stage added to the VFH algorithm in the 
VFH+ algorithm was to mask the histogram represent-
ing obstacle density to consider only directions feasible 
for the robot to travel in. The robot was assumed to be a 
wheeled robot with Ackermann steering mechanism, and 

hence, the robot trajectory was assumed to be based on 
series of circular arcs.

The VFH* algorithm developed in [20] used the A* 
search algorithm to add look-ahead capability to the 
VFH+ algorithm to reduce problems arising from purely 
local obstacle avoidance.

An and Wang [21] developed the Vector Polar His-
togram (VPH) algorithm by combining the VFH+ 
algorithm and the Potential Field Method. The VPH algo-
rithm relied on the newly available laser range scanners 
with comparably higher accuracy to accurately represent 
the local obstacle map.

Gong et  al. [22] extended the VPH algorithm to the 
VPH+ algorithm by grouping individual obstacles to 
obstacle blocks and determining concave blocks ahead 
of time, in order to increase the efficiency of the robot in 
traversing the environment. The VPH+ algorithm also 
extended the VPH cost function to take the robot head-
ing and speed into account.

Methods
Design of the robot
The section presents the mechanical design and system 
architecture of the Scorpio robot.

Fig. 1  The huntsman spider. The huntsman spider of Southern Morocco (top) performing crawling motion (bottom left) and rolling motion (bottom 
right)
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Mechanical design
The design of the Scorpio is based on the huntsman spi-
der introduced in the previous section, to enable it to 
perform crawling and rolling locomotions. While the 
huntsman spider has eight legs, the Scorpio robot is 
designed with four legs which are adequate to perform 
crawling and rolling locomotions.

Figure  2 contains a part-by-part view of Scorpio robot 
showing the assemblies. It is observed that the Scorpio 
robot consists of four legs (tibia), four servo covers and 
joints (femur), four main joints (coxa), and a body. The pro-
cessor, controller, and sensors are placed inside the body 
which is made from PLA plastic. Twelve servo motors are 
used in this Scorpio robot to generate locomotion. Each 
leg (model shown in Fig. 3) is mounted with three servos, 
so it has 3 degrees of freedom. These legs are able to rotate 
and transform from crawling to rolling gaits. The specifica-
tions of the Scorpio robot are listed in Table 1.

For crawling motion, the Scorpio robot opens up its four 
legs as shown in Fig. 4a. The crawling involves 2 degrees of 
freedom. Transformation from crawling pose to cylindri-
cal exoskeleton for rolling requires a motion of 3 degrees 
of freedom. The Scorpio robot uses its legs to push from 
the ground and shift the center of gravity to achieve the 
rolling motion with 1 degree of freedom. The rolling speed 
of the Scorpio robot doubles the rate of crawling speed.

Sensor design
The team aimed to create a customized range sensor with 
a greater degree of control. To this end, an ultrasonic 
sensor (model number SRF01) was mounted on a HS-
35HD Ultra Nano Servo Motor. The ultrasonic sensor 
has a beam width of 12°. Further details of the sensor are 

tabulated in Table 2. A picture of the sensor mounted on 
the Scorpio can be found in Fig. 5.

The servo motor is actuated to the desired angle, after 
which the ultrasonic sensor is triggered. The time taken 
for the sensor to rotate to the desired angle, transmit, and 
receive the data is roughly 0.15 s per point. Due to the slow 
speed of sensing, a comprehensive scan of the entire envi-
ronment at each instance is not recommended. Figure  6 
displays a sample scan taken with the ultrasonic sensor.

Mode of locomotion
The Scorpio platform demonstrates different modes of 
locomotion in the two morphologies, each with their 
respective strengths and weaknesses.

Fig. 2  Exploded view of the Scorpio. An exploded view of the Scor-
pio model displaying all the components of the Scorpio

Fig. 3  Scorpio leg. The model of an individual Scorpio leg

Table 1  Specifications of the Scorpio robot [24]

Controller Arduino Mini Pro 328

Servo motor JR ES 376

Servo controller Pololu Micro Maestro 18 channel USB servo 
controller

Battery LiPo 1200 mAh 7.4 v

ZigBee XBee Pro S1, Digi International

Full body material Polylactic acid (PLA)

Diameter (rolling) in mm 168 mm

LXWXH (walking) in mm 230 mm × 230 mm × 215 mm

Weight (full weight) in g 430 g
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• • The rolling mode allows for greater speed of locomo-
tion with reduced environmental perception.

• • The crawling mode conversely trades better environ-
mental perception for reduced locomotion.

This paper makes use of only the crawling mode of loco-
motion, to improve perception of environmental obsta-
cles. While the limited field of view in rolling mode limits 
the potential for integration into the robot motion plan-
ner, future improvements in terrain traversal efficiency 
necessitate the use of rolling mode to be taken into 
account.

Algorithm design
The local path planning algorithm design is informed by 
the following constraints inherent in the Scorpio robotic 
platform:

1.	 Kinematic constraints: Since the mode of locomo-
tion in the Scorpio is crawling, standard wheeled 
robot kinematics are not valid. Consequently, all 
recent standard local path planning algorithms which 
assume Ackermann steering model cannot be used 
[14–22].

2.	 Sensor inaccuracy constraints: The customized ultra-
sonic sensor has a beam width of 15°, making it more 
inaccurate as the range increases. Thus, any obsta-
cle in the sonar beam at the same range (as seen in 
Fig.  7) will produce the same reading. Hence, algo-
rithms which rely on the accuracy of environmental 
information provided by the exteroceptive sensor 
[21, 22] will perform poorly on the Scorpio.

3.	 Sensor speed constraints: Slow scanning speed of the 
sensor implies performing scans over the full angu-
lar range frequently will negatively impact the effi-
ciency of the algorithm. As a result, all recent local 
path planning algorithms which utilize the full sensor 
range [15–22] cannot be implemented.

4.	 Complex kinematic model: The Scorpio platform 
consists of twelve joint motors, resulting in a com-
plex kinematic motion model. Computation of 
the entire kinematic model for locomotion on the 
Arduino processor used would greatly decrease 
speed and efficiency of the robot, rendering invalid 
all recent algorithms requiring computation of exact 
vehicle kinematics [18–22].

5.	 Processor constraints: The Arduino Mini Pro pro-
cessor is single-threaded; thus, each separate action 
has to be performed serially. As a consequence, the 
platform is unable to scan the environment and move 
simultaneously resulting in the invalidation of all 
algorithms in which robot velocity is an important 
determinant of direction of motion [17–22].

Thus, to summarize, the optimal local path planning 
algorithm must be able to perform inferences on the 
local obstacle distribution using sparse, inaccurate data 
obtained at a low frequency. Furthermore, due to ineffi-
ciency of the mechanism while turning, it is desirable to 
ensure the robot motion is as straight as possible, with 
minimum turning. The goal of the algorithm is to ensure 
the robot traverses the maximum distance from the start-
ing point in a fixed period of time.

The most recent state-of-the-art local path planning 
algorithms in the robotics research community are the 
Enhanced Vector Polar Histogram (VPH+) [22]. The 

Fig. 4  Scorpio robot model in different configurations. a Crawling 
configuration, b rolling configuration side view, c rolling configura-
tion front view

Table 2  Specifications of the custom ultrasonic sensor

Sensor SRF01

Beam width 10°

Minimum range

Maximum range 6 m

Time period per data point 0.15 s

Motor HS-35HD Ultra Nano Servo

Size in mm 18.6 × 7.6 × 15.5

Weight (g) 4.5

Torque (kg/cm) 0.8

Speed 0.10
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VPH+ algorithm enhances the VPH algorithm formula-
tion with obstacle grouping and classification, along with 
inclusion of the robot velocity and heading into the cost 
function. Since the sensors used by the Scorpio are too 
inaccurate to group obstacles accurately, and the single-
threaded onboard processor ensures the platform will 
not be in motion when the algorithm is being computed, 
the VPH+ algorithm will be modified with suitable con-
straints to better fit the Scorpio platform. Motion primi-
tives will be used to approximate the Scorpio kinematic 

model, to ensure acceptable performance on the Arduino 
Mini Pro processor.

Formulation
The VPH+ algorithm represents the local environment 
as a polar histogram. It generates a cost function for each 
sensor angle using inputs from both the range sensor and 
the robot kinematic model. It leverages on the accuracy 
and the range of the laser range sensor to determine the 
boundaries of obstacle blocks, as well as to classify the 
obstacle as concave or convex. Concave obstacles are 
avoided outright, with the histogram value at the corre-
sponding angles being set to zero.

VPH+ algorithm
Figure  8 depicts the diagram used to determine the 
reachable distance in each direction. The VPH+ algo-
rithm modifies each range reading with the radius of the 
robot. Thus, in the diagram, the maximum traversable 
distance by the robot in direction Oi due to obstacle Oj is 
d′ij, the length of PrM given by:

(1)d′ij =

{

di sij > R
dj cos yij otherwise

Fig. 5  Scorpio with customized ultrasonic sensor. a Perspective view, b side view, c front view

Fig. 6  Sample ultrasonic scan. Sample scan with ultrasonic sensor
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where yij is the angle between points i and j, sij = dj sin yij , 
R is the robot radius.

The overall maximum traversable distance in direction 
Oi is given by

where n is the total number of beams per scan given by 
π/αBW for a sensor with beam width αBW.

The observed points are then grouped as obstacles if 
the distance between them is lesser than a user-defined 
safe threshold dthr, which is larger than the robot radius, 
plus a buffer distance. The distance between two adjacent 
points is given by:

The VPH+ classifies obstacles as concave or convex, 
depending on which the following symbol function is 
constructed:

(2)Di = min(d′ij)− R; (j = 0, 1, . . . , n− 1)

(3)di,i+1 =

√

di
2
+ di+1

2
− 2didi+1 cosαBW

(4)B(i) =

{

0 i ∈ concave obstacle block
1 otherwise

The kinematics of the robot are then taken into consid-
eration with the current robot velocity, minimum turning 
radius, and maximum robot velocity being used to gener-
ate a value for the safe distance dsafe. A threshold function 
H(i) similar to B(i) is then created such that

An angular cost function is constructed considering the 
angles shown in Fig. 9 given by:

where hg is the angle between the goal and the current 
sensor angle, h0 is the angle between the current direc-
tion of the robot and the current sensor angle, k1, k2, and 
k3 are user-defined constants, k1hg is the cost associated 
with deviating from the direction to the goal, k2h0 is the 
cost associated with deviating from the current direction 
of motion, and k3 is a nonzero constant used to ensure 
the denominator is nonzero. Thus, a robot with high k1 
and low k2 will prioritize goal following at the cost of 
maintaining a smooth trajectory.

The final cost function is calculated with the individual 
cost functions with the expression:

The desired direction is the direction with the maximum 
cost function.

Effect of sensor inaccuracy
The design of the Constrained Enhanced Vector Polar 
Histogram (CVPH+) is informed by the constraints 
from the inaccuracy of the sonar sensor, the small size of 
the platform, as well as the low processing power of the 

(5)H(i) =

{

1 Di ≥ dsafe
0 otherwise

(6)S(i) = k1hg + k2h0 + k3

(7)C(i) =
B(i)H(i)Di

S(i)

(8)θfinal = max(C(i))

Fig. 7  Inaccuracy due to beam width. All three obstacles at the same 
range will produce the same reading due to the large beam width

Fig. 8  Grouping of obstacle blocks in VPH+. Adjacent points closer 
than a pre-defined threshold are classified as a single obstacle
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onboard processing unit. The field of view of the ultra-
sonic sensor can be divided into n sectors, as shown in 
Fig. 10, where n is given by:

where αFOV is the total field of view of the sensor and αBW 
is the beam width of the sensor, as defined earlier.

Inaccuracies arising due to the beam width of the sonar 
are of the order of the robot size. For example, consider 
the scenario in Fig. 11, in which acceptable distance dacc 
is the range at which the lateral beam width becomes 
equal to the diameter of the robot (dR, say). The value for 
dacc can be found from the expression given by:

Consequently, obstacle pings with ranges greater than 
dacc cannot be used directly in VPH+ for obstacle group-
ing and to obtain obstacle boundaries. When the range 
reading from obstacles is less than dacc (implying that 
the distance between two obstacles dGAP is less than the 
size of the robot dR), further accuracy regarding obstacle 
spacing becomes unnecessary; hence, the ranges can be 
used directly to obtain further inferences regarding the 
obstacle field.

In the case of [22], the range sensor used was the 
LMS200, which has an angular beam width of 4.4 mil-
lirad [25] and a maximum range of 80 m. Thus, the diam-
eter of the robot must be greater than 0.352 m, according 

(9)n =
αFOV

αBW

(10)dacc =
dR

αBW

to Eq.  10. The Pioneer P3AT robot used by them has a 
width of 0.381 m, which fulfills this criterion.

Cost function reformulation
In the cost function for the VPH+ algorithm, the B(i) and 
H(i) terms are indicator terms having values of only 1 or 
0. Consider the modified cost function

Assuming the same values for B(i) and H(i) in the VPH+ 
formulation, in this case, the desired direction at the end 
of the inference cycle will be given by:

Let the absolute angle for the goal as seen in Fig. 9 be αG 
and the absolute angle for the point i be αi. Then, from 
Fig. 9, the following relations are true:

The cost function then becomes:

where Kα is a constant for the current inference cycle 
given by:

(11)C ′(i) =
k1hg + k2h0

Di

(12)θfinal = min(C ′(i))

(13)hg = αG − αi

(14)h0 = hr − αi

(15)C ′(i) =
k1(αG − αi)+ k2(hr − αi)

Di
=

Kα − Kkαi

Di

Fig. 9  Calculation of cost function in VPH+. Angles used for the 
calculation of each cost function Fig. 10  Sensor field of view. Field of view of the custom-made 

ultrasonic sensor used
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and Kk is a constant for the algorithm obtained from the 
following expression:

Another angle, αj, will be chosen if its cost function C ′(j) 
will be lesser than C ′(i). However, the maximum range of 
the sensor rmax implies that an upper limit to the angle 
can be determined and is given by the expression:

By observation, it can be seen that the numerator of the 
cost function is minimum for scan angles that directly 
point toward the goal or toward the robot heading, 
depending on the values of k1 and k2.

Hence, the maximum scanning angle for the current 
scan needs to take both into account, along with the max-
imum possible angle reachable by the sensor αsensor,max.

The resulting number of beams required is then obtained 
by:

A simple example would be when the robot is pointed 
toward the goal (i.e., αG = hr, and there is no obstacle in 
front). In this case, it is expected that the cost function 
will be minimum in the direction of the goal; hence, no 

(16)Kα = k1αG + k2hr

(17)Kk = k1 + k2

(18)
αj,max ≤

Kk

Kα

−
rmax

DiKα

(Kα − Kkαi)

(19)αmax = max(αG,max,α0,max,αsensor,max)

(20)ns =
αmax

αBW

other angle can have a cost function lower than the goal 
direction. Sure enough, on inputting the values in the 
above equation, we receive

Since αG is the first angle sector, the relation simplifies to 
αj,max being equated to αG, the goal angle.

Figure 12 shows the numbering convention used for the 
sonar data. The sonar scan is divided into an odd number 
of scans n. The center beam is numbered 0, the beams on 
the left are numbered negative, while the beams on the 
right are numbered positive.

Implementation
Gait primitives for the Scorpio robot were first 
obtained. The motion of the Scorpio robot in three 
directions was characterized: left, right, and forward. 
Histograms of the gaits were obtained, as shown in 
Figs. 13, 14 and 15.

Structural inaccuracies introduced due to the inexact 
nature of the 3D printing process resulted in different val-
ues for left and right gait primitives. The forward motion 
gait was also discovered to display a drift, as shown in 
Fig. 16, which was compensated for in the implementa-
tion of the algorithm.

The values of k1 and k2 were obtained from by optimiz-
ing the implementation of the VPH+ algorithm for the 
best result, as tabulated in Table 3.

(21)αj,max ≤ αG

Fig. 11  Sensor inaccuracy. Constraints to the algorithm due to inac-
curacy of the sensor

Fig. 12  Sonar sector numbering. Numbering convention used for 
sonar data
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The pseudocode of the Constrained VPH+ algorithm is 
displayed below.

Pseudocode
loop

While robot path is not completed
Scan and obtain ranges dg and d0 in direction to-
wards goal, and towards robot heading.
Calculate number of beams ns

Calculate constants Kk and Kα

for i = 1 to ns do
Obtain range scan di
if di > dacc then
Final distance Di = di − dR

else
Append di to unprocessed ranges array R

end if
end for
Calculate maximum reachable distance in each di-
rection for nR unprocessed ranges in array R
for i = 1 to nR do

for j = 1 to nR do
Perpendicular dist si,j = djsin(αBW |i− j|)
if (si,j >dR) or ((si,j <= dR) and (djcos(αBW |i−
j|) >di)) then
d i,j = di

else
d i,j = dicos(αBW |i− j|)

end if
end for
Di = min(d i,j)− dR

end for
Group Obstacles to Block

for i = 1 to (nR − 1) do

di,i+1 = di
2 + di+1

2 − 2didi+1cos(αBW )
if di,i+1 >= dacc then
nblock = nblock + 1
blocki = nblock

end if
end for
Construct Symbol Function
for i = 2 to (nR − 1) do

Let nStart(blocki) be starting point of blocki
Let nEnd(blocki) be end point of blocki
if dnStart(blocki) <dnEnd(blocki−1) and dnStart(blocki+1

>dnEnd(blocki) then
blocki is Concave =⇒ Bi = 0

else
blocki is not Concave =⇒ Bi = 1

end if
end for
For all other points which are not part of the
unprocessed ranges array (ie, scan range >dacc),
Bi = 1
Construction of Cost Function
for i = 1 to ns do
Cost C i = Bi

Kα−Kkαi

Di

end for
Direction of next motion θfinal = αBW ∗min

i
(C (i))

Distance of next motion rfinal = Dmin
i

(C (i)

end loop
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Fig. 13  Forward motion gait primitive. Histogram for forward motion 
gait primitive
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Fig. 14  Leftward motion gait primitive. Histogram for leftward 
motion gait primitive
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Fig. 15  Rightward motion gait primitive. Histogram for rightward 
motion gait primitive
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Fig. 16  Forward motion drift. Histogram for forward motion drift
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The algorithm and its performance were compared 
against the VPH+ algorithm on two obstacle courses 
shown in Figs. 17 and 18. First, a simple obstacle course 
was created consisting of a single obstacle, on which 
the algorithms were evaluated. A second, more compli-
cated obstacle course was created with a higher obstacle 
density.

The height of the ultrasonic sensor is around 17  cm 
from the ground; hence, it was attempted to ensure 
obstacles of a similar minimum height. The cluttered 
office environment is used to ensure effectiveness of the 
algorithm in realistic settings.

To ensure minimal errors due to pose inconsistency, 
the goal was set to be simply 1.20 m from the start point. 

The trials were conducted 6 times for each algorithm at 
each obstacle course.

Results
Figure 19 shows the comparison of the paths taken by the 
robot for the simple obstacle course, consisting of a single 
obstacle, shown in Fig. 17. As seen in the figure, the paths 
taken by the robot due to both the algorithms compare 
very closely. However, the VPH+ algorithm causes the 
robot to double back due to erroneous grouping of obsta-
cle caused by the wide beam width of the sonar.

The VPH+ algorithm took an average of 249.7254  s, 
while the CVPH+ algorithm clocked an average time of 
224.3952 s.

Figure  20 shows the comparison between the paths 
taken in the more complicated obstacle course shown 
in Fig.  18. The closeness of the two obstacles in com-
parison with sonar beam width causes the VPH+ algo-
rithm to erroneously group them together, resulting 
in the robot doubling back halfway to look for another 
path. The CVPH+ algorithm, however, closely follows 
the contours of two obstacles, resulting in a longer, more 
conservative path. The cause of this path is the choice of 
constants k1 and k2, which were optimized for the first 
obstacle course. Further optimization of the constants 
can lead to more performance gains for the CVPH+ 
algorithm.Fig. 17  Simple obstacle course. Simple obstacle course for the robot

Fig. 18  Simple obstacle course path comparison. Path comparison 
in simple obstacle course

Table 3  Parameters used in experiment

αBW 12°

rmax 8 m

rmin 0.18 m

αFOV 165°

nBEAM 15

dR 0.15 m

dacc 1.15 m

k1 0.6

k2 0.4
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The VPH+ algorithm took an average of 336.5960  s, 
while the CVPH+ algorithm took 329.4032 s.

Conclusions and future work
The CVPH+ algorithm is found to outperform the 
VPH+ algorithm in both empty and clutter-filled envi-
ronments. The improvements in the algorithm were 
obtained from formalizing implicit assumptions made in 
the VPH+ algorithm regarding the sensor and the robot 
model, both of which were invalid for the Scorpio robot.

Further insight was obtained from examining the origi-
nal VPH+ cost function further and reformulating it to 
improve the performance of the CVPH+ algorithm.

Pose inaccuracy due to the noisy gait primitive esti-
mates, as well as the inherent inaccuracies due to the 

3D printing process, has been seen to reduce the perfor-
mance of both the VPH+ and the CVPH+ algorithms. 
A more comprehensive formulation taking into account 
pose and map estimates will result in better performance 
of the algorithms.

A further avenue of future research includes the use of 
the rolling configuration of the robot to improve its speed 
in traversing the environment. The challenges caused by 
the displacement of the ultrasonic sensors in the rolling 
mode of the robot will also be an interesting aspect to be 
explored.
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