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Abstract

This study aims to realize rolling locomotion by a multi-legged robot inspired by “wheel spider” in nature. A novel
robot mechanism and a strategy for rolling locomotion is proposed in this paper based on motion analysis of wheel
spider species in nature. We also present details of a model of a wheel-spider-inspired hexapod robot and design of its
controller in realizing rolling locomotion. Results of numerical simulations validated the efficacy of the proposed
approach in synthesizing rolling locomotion in a wheel-spider-inspired hexapod robot.
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1 Background
Rolling locomotion which has high mobility has been
applied many times to mobile robots. Spherical robots are
an example of mobile robots performing rolling locomo-
tion. Spherical robots operate in hostile industrial envi-
ronment, other planets or a human place like office or
home. Spherical robots have been expected to obtain envi-
ronmental data with sensors, gather and convey an object
with an arm installed inside a spherical body in those
environments [1–7]. However, it is considered that these
environments have obstacles or difference in level that
interrupt rolling locomotion. In this case, robots should
apply other locomotion.
This paper focuses on creatures found in nature that can

perform rolling locomotion and other locomotion. Spi-
ders called “wheel spider (carparachne aureoflava)” which
can perform rolling locomotion is one of the creatures in
nature. The wheel spiders can reconfigure its body struc-
tures as wheels by fixing its legs into constant positions
and perform rolling locomotion on its side on a slope [8].
This paper aims to realize rolling locomotion by

a wheel-spider-inspired multi-legged robot on the flat
ground.
Biologically inspired robots have been studied in litera-

tures, e.g., [9–11]. Especially, biologically inspiredrolling
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locomotion has been discussed in literatures, e.g., [12, 13].
Lin has focused on caterpillars that can escape rapidly
from predators by reconfiguring their body structures like
wheels. Caterpillar-inspired soft robots have been devel-
oped and attempted rolling locomotion [12]. King has
focused on rolling locomotion repeating somersault per-
formed by a spider called “huntsman spider (cebrennus
villosus)”. A quadruped robot which can somersault has
been developed based on an image analysis of its rolling
locomotion. The quadruped robot has performed rolling
locomotion [13].
In those studies, although behavior of the creatures

is analyzed by images, biologically inspired mathemati-
cal models are not developed. In this paper, a biologi-
cally inspired mathematical model of the wheel spiders
is developed and rolling locomotion is analyzed through
simulations. The model captures characteristics of rolling
locomotion. In addition, motion analysis based on simula-
tions applying the model allows physical parameters to be
determined arbitrarily and it can be utilized to determine
robot parameters.
To realize rolling locomotion by the wheel-spider-

inspired multi-legged robot, it is necessary to develop the
model considering the influence of the ground on the
robot while rolling locomotion and design a controller. For
such the issue, a model considering the influence of the
ground on a system is developed by applying constraint
force on the ground to a model without the influence of
the ground and considering velocity transformation due to
collision in a previous literature [14]. Applying the above
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method, a wheel spider rolling on a slope is modeled and
analyzed through simulations at first. A mechanism of
the multi-legged robot and the strategy for rolling loco-
motion are proposed based on results of motion analysis
of the wheel spider and the model of the multi-legged
robot is developed. The controller which can generate leg
trajectories respectively in response to a robot state is
designed. The effectiveness of the proposed controller is
verified through numerical simulations of rolling locomo-
tion by the multi-legged robot on the flat ground and it is
shown that the multi-legged robot can achieve the rolling
locomotion.

2 Method
2.1 Modeling of wheel spider rolling on the slope
The wheel spider can be found in the Namib Desert of
Southern Africa and its size is 20 mm. The wheel spider
reconfigures its body as a wheel by fixing its legs into con-
stant positions after a short runup and goes down sand
dunes when attacked by its nemesis. The wheel spider
resumes walking with its legs straight as rotational speed
reduces [8].
This section presents the model of the wheel spider

rolling on the slope for motion analysis.

The wheel spider model is developed based on follow-
ing assumptions.

Assumption 1. The wheel spider does not fall down
while rolling.
Assumption 2. The wheel spider rolls without
slipping on the ground.
Assumption 3. Positional relationships between the
cephalothorax, the abdomen and each leg of the
wheel spider do not change while rolling.

According to assumptions 1 and 2, the model diagram
of the rolling wheel spider is shown in Fig. 1. The rolling
wheel spider is described on the vertical two-dimensional
surface. The x-axis describes the ground and is horizontal
to the slope. The variables surrounded by the double line
will be definitely independent.
According to assumptions 2 and 3, the wheel spider

rolls on the slope with keeping a posture. Only some
parts touching the ground will be changed. Constraint
conditions between the parts of the wheel spider does
not therefore change and only the constraint condi-
tions between the ground and some touching parts will
change.

Fig. 1Model diagram of wheel spider rolling on slope. X-axis describes the ground and is horizontal to the slope. The rotational angles of the
abdomenψa and legsψil ,ψir are relative angle for the cephalothoraxψc . The variables surrounded by the double line will be definitely independent
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Table 1 Simulation parameters of rolling wheel spider

Mass of cephalothorax and abdomen (kg) 5.00 × 10−4

Mass of legs (kg) 1.00 × 10−4

Inertia moment of cephalothorax and abdomen (kgm2) 6.25 × 10−9

Inertia moment of legs (kgm2) 5.00 × 10−11

Viscosity of cephalothorax and abdomen (Nms/rad) 5.00 × 10−12

Viscosity of legs (Nms/rad) 1.00 × 10−12

Length from cephalothorax to abdomen (m) 1.00 × 10−2

Length from cephalothorax to pair of first legs (m) 6.50 × 10−3

Length from cephalothorax to pair of second legs (m) 9.00 × 10−3

Length from cephalothorax to pair of third legs (m) 1.20 × 10−2

Length from cephalothorax to pair of last legs (m) 1.40 × 10−2

Radius of cephalothorax and abdomen (m) 5.00 × 10−3

Radius of legs (m) 1.00 × 10−3

Gravity acceleration (m/s2) 9.81

The motion equation of the wheel spider model is
derived by applying a projection method [15–17]. Assum-
ing that a system is constituted of independent parts
and the parts are connected by constraint conditions,
the projection method involves a whole motion equation
from motion equations and constraint conditions of each
part.
In this paper, the motion equation of the rolling wheel

spider is derived by applying constraint force on the
ground to a motion equation of the wheel spider without
the ground and considering velocity transformation due
to collision [14, 18].

The parameters in the numerical simulations of the
wheel spider rolling on the slope are set as shown in
Table 1.

2.1.1 Model of wheel spider without the ground
An unconstrained motion equation is written to derive
the motion equation of the wheel spider without the
ground.
Generalized coordinates xs are defined as

xs = [ψc, xc, zc,ψa,ψ1l,ψ1r ,ψ2l,ψ2r ,ψ3l,ψ3r ,ψ4l,ψ4r ,

xa, za, x1l, z1l, x1r , z1r , x2l, z2l, x2r , z2r , x3l, z3l, x3r ,

z3r , x4l, z4l, x4r , z4r]T , (1)

which include the rotational angle ψn and center of grav-
ity coordinates (xn, zn) of each part shown in Fig. 1. The
subscript n denotes the set of indexes n = {c, a, il, ir}.
Here the subscripts c, a, il, and ir denote the cephalotho-
rax, the abdomen, the left legs, and the right legs,
respectively and i = 1, · · · , 4 denotes number of pair
of the legs. The rotational angles of each leg and the
abdomen are relative angle for the cephalothorax. These
parts are assumed to be independent as shown in
Fig. 2a.
The unconstrained motion equation is represented by

Msẍs = hs, (2)

where Ms is a generalized mass matrix and hs is
a generalized force vector. The unconstrained motion

a) b)
Fig. 2 Image for constraining (a, b). The parts of the wheel spider are assumed to be independent. These parts are constrained by the constraint
conditions which are definitions of positional relationships between the cephalothorax and other parts
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equation (2) is constituted of motion equations of inde-
pendent parts shown in Fig. 2a. The generalized mass
matrix Ms and the generalized force vector hs are
given as

Ms =
⎡
⎣M11 0

0 M22

⎤
⎦ , (3)

M11 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is 0 0 Ia I1l I1r I2l I2r I3l I3r I4l I4r
0 mc 0 0 0 0 0 0 0 0 0 0

0 0 mc 0 0 0 0 0 0 0 0 0

Ia 0 0 Ia 0 0 0 0 0 0 0 0

I1l 0 0 0 I1l 0 0 0 0 0 0 0

I1r 0 0 0 0 I1r 0 0 0 0 0 0

I2l 0 0 0 0 0 I2l 0 0 0 0 0

I2r 0 0 0 0 0 0 I2r 0 0 0 0

I3l 0 0 0 0 0 0 0 I3l 0 0 0

I3r 0 0 0 0 0 0 0 0 I3r 0 0

I4l 0 0 0 0 0 0 0 0 0 I4l 0

I4r 0 0 0 0 0 0 0 0 0 0 I4r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M22 := diag (ma,ma,m1l,m1l,m1r ,m1r , · · · ,
m4l,m4l,m4r ,m4r) ,

Is := I1l + I1r+ I2l+I2r+I3l+I3r+I4l + I4r+Ia + Ic,

hs=
[−ccψ̇c,mcgsin(θslp),−mcg cos(θslp),−caψ̇a,−c1lψ̇1l,
− c1rψ̇1r , · · · ,−c4lψ̇4l,−c4rψ̇4r ,mag sin(θslp),

− mag cos(θslp),m1lg sin(θslp),−m1lg cos(θslp),

m1rg sin(θslp),−m1rg cos(θslp), · · · ,m4lg sin(θslp),

−m4lg cos(θslp),m4rg sin(θslp),−m4rg cos(θslp)
]T ,
(4)

where In,mn and cn are the inertia moment, mass and vis-
cosity of each part, θslp is the angle of the slope and g is the
gravity acceleration shown in Fig. 1.
The projection method leads a constrained motion

equation by considering constraint conditions that con-
strain system behavior including definitions of positional
relationships between each part. The constraint condi-
tions of the wheel spider are the definitions of positional
relationships between the cephalothorax and other parts.
According to assumption 3, the positional relationships
do not change while rolling. Therefore, the constraint
conditions are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa = xc + la sin(ψc + ψa),
za = zc + la cos(ψc + ψa),
xil = xc + lil sin(ψc + ψil),
zil = zc + lil cos(ψc + ψil),
xir = xc + lir sin(ψc + ψir),
zir = zc + lir cos(ψc + ψir),
ψa = π ,
ψil = −αi,
ψir = αi,

(5)

where la, lil and lir are the length from the cephalothorax
to the abdomen, the left legs and the right legs shown in
Fig. 1 and αi denote any constant angles shown in Fig. 2b.
The constraint conditions (5) describe the linkages which
connect the cephalothorax to other parts as shown in
Fig. 2b.
A constraint matrix Cs which should satisfy Csẋs = 0

is obtained from the constraint conditions. Moving right
member of each equation in (5) to the other side, they are
combined into a constraint equation �s = 0 as

�s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψa − π

ψ1l + α1
ψ1r − α1

...
ψ4l + α4
ψ4r − α4

xa − xc − la sin(ψc + ψa)
za − zc − la cos(ψc + ψa)
x1l − xc − l1l sin(ψc + ψ1l)
z1l − zc − l1l cos(ψc + ψ1l)
x1r − xc − l1r sin(ψc + ψ1r)
z1r − zc − l1r cos(ψc + ψ1r)

...
x4l − xc − l4l sin(ψc + ψ4l)
z4l − zc − l4l cos(ψc + ψ4l)
x4r − xc − l4r sin(ψc + ψ4r)
z4r − zc − l4r cos(ψc + ψ4r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (6)

The constraint matrix Cs is represented by

Cs = ∂�s
∂xs

. (7)

Utilizing the constraint matrix Cs and Lagrange’s unde-
termined multipliers λs, a constrained system is given by

Msẍs = hs + CT
s λs. (8)

Since (8) has redundant degrees of freedom, they are
reduced.
An independent velocity vector under constrained state

q̇s which is selected from ẋs is defined as

q̇s = [
ψ̇c, ẋc, żc

]T . (9)
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Given that ẋs = [
q̇Ts , vTs

]T , the constraint matrix Cs
can be represented by Cs = [Cs1,Cs2] to satisfy Csẋs =
Cs1q̇s + Cs2vs. From this relationship, an orthogonal
matrix Ds can be obtained so as to CsDs = 0 and ẋs =
Dsq̇s. Since Csẋs = 0 gives

Cs1q̇s + Cs2vs = 0,
vs = −C−1

s2 Cs1q̇s, (10)

the orthogonal matrix Ds is obtained from ẋs =[
q̇Ts , vTs

]T = Dsq̇s as

Ds =
[

I3
−C−1

s2 Cs1

]
, (11)

where I denotes an identity matrix and the index of I
denotes the dimensions of the identity matrix. The dimen-
sions of I3 should equal the dimensions of the indepen-
dent velocity vector q̇s. Besides, (11) satisfies

CsDs =
[
Cs1 Cs2

]⎡
⎣ I3

−C−1
s2 Cs1

⎤
⎦ ,

= Cs1 − Cs2C−1
s2 Cs1,

= 0.

The constrained motion equation is derived by project-
ing the constrained system (8) on a space constrained
by DT

s and transforming the coordinates of component
vectors. Thus the motion equation of the wheel spider
without the ground is derived as

DT
s MsDsq̈s + DT

s MsḊsq̇s = DT
s hs. (12)

2.1.2 Consideration of constraint force on the ground
The motion equation of the wheel spider rolling on the
slope is derived by applying constraint force on the ground
to the motion equation of the wheel spider without the
ground [14].
Applying the constraint force on the ground τ I to the

motion equation of the wheel spider without the ground
(8), the motion equation of the wheel spider rolling on the
slope is given by

Msẍs = hs + CT
s λs + τ I . (13)

Applying a constraint matrix depending on the ground
CI and Lagrange’s undetermined multipliers λI , τ I is rep-
resented by

τ I = CT
I λI , (14)

and CI should satisfy CI ẋs = 0.
When the height of a grounding point hn is less than or

equal to 0 (hn ≤ 0) and the ground reaction force λn is
greater than 0 (λn > 0), consider the following constraint
conditions that

1. grounding parts roll without slipping,
2. height of grounding parts does not change.

Here hn can be represented by hn = zn − rn, where rn
is the radius of each part shown in Fig. 1. The following
expressions are derived from the above:{

xn = xn0 + rn(ψc − ψc0)

zn = rn
, hn ≤ 0 ∩ λn > 0, (15)

where xn0 and ψc0 are the x-coordinate of each part and
the angle of the cephalothorax when the constraints occur,
respectively.
Thus the constraint matrix depending on the ground CI

is represented by

CI = ∂�I
∂xs

, hn ≤ 0 ∩ λn > 0, (16)

�I :=
[
xn − (xn0 + rn(ψc − ψc0))

zn − rn

]
= 0,

where the constraint equation �I = 0 is obtained from
(15).
When (16) holds, (13) can be transformed into

DT
s MsDsq̈s + DT

s MsḊsq̇s = DT
s hs + DT

s C
T
I λI , (17)

by projecting (13) on the space constrained by DT
s and

transforming the coordinates of component vectors.
Besides, (13) can also be represented by

Msẍs = hs + CT
ssλss, (18)

Css :=
[
CT
s ,CT

I

]T
,

λss :=
[
λT
s ,λT

I

]T
,

substituting (14) into (13). SinceCssẋs = 0 andCssẍs = −
Ċssẋs, (18) can be transformed into

Cssẍs = CssM−1
s hs + CssM−1

s CT
ssλss,

λss =
(
CssM−1

s CT
ss

)−1 (
CssM−1

s hs + Ċssẋs
)
. (19)

λI included in (17) is produced from (19).

2.1.3 Velocity transformation
In the case of touching each part of the wheel spider to the
ground, collisions occur. Thus velocities before the col-
lision should be changed to velocities after the collision.
Assuming that completely inelastic collision occurs when
some parts touch the ground, the velocities after the col-
lision is obtained from the velocities before the collision
[14, 18].
Transforming (13), λs is given by

λs = −X−1
s

(
CsM−1

s hs + Ċsẋs
) − X−1

s CsM−1
s τ I , (20)

Xs := CsM−1
s CT

s .
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Substituting (14) and (20), (13) is transformed into

Msẍs = Y shs − CT
s X

−1
s Ċsẋs + Y sCT

I λI , (21)
Y s := I30 − CT

s X
−1
s CsM−1

s ,

where the dimensions of I30 should equal the dimensions
of the generalized coordinates xs.
Let ẋ−

s denotes the velocities before the collision and
ẋ+
s after the collision. From (21), a velocity relationship

between the velocities before the collision and after that is
represented by

Msẋ+
s − Msẋ−

s = Y sCT
I λI . (22)

Since ẋ+
s should satisfy CI ẋ+

s = 0, λI is given by

λI = −Z−1
s CI ẋ−

s , (23)
Zs := CIM−1

s Y sCT
I .

Substituting (23) into (22), ẋ+
s is obtained from

ẋ+
s =

(
I30 − Ms

−1Y sCT
I Zs

−1CI
)
ẋ−
s . (24)

2.2 Simulation of rolling wheel spider
Behavior of the wheel spider rolling on the slope is simu-
lated for motion analysis. The initial position and angle of
the cephalothorax are set at (xc, yc) = (0.00, 1.50 × 10−2)
m and ψc deg, respectively. The rotational angles of the
legs are set at α1 = 60.0, α2 = 95.0, α3 = 1.30 × 102 and
α4 = 1.55 × 102 deg and the angle of the slop is set at
θslp = 10.0 deg. The wheel spider rolls on the slope from
the state of grounding the abdomen to the ground.
Simulation results are shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10,

11 and 12. Figure 3 shows the angle of the cephalothorax,
Figs. 4, 5 and 6 show the x direction positions of each part,
Figs. 7, 8 and 9 show the z direction positions of each part

Fig. 3 Rotational angle of cephalothorax. The rotational angle of the
cephalothorax increases over time. The wheel spider rotates about 11
times in 3 s

Fig. 4 X direction positions of cephalothorax and abdomen (xc:
cephalothorax, xa: abdomen). The x direction positions of the
cephalothorax and the abdomen increase over time. They move
about 0.7 m with moving back and forth in 3 s

and Figs. 10, 11 and 12 show the positions of each part on
the two-dimensional surface.
Figures 3, 4, 5 and 6 show that the angle of the

cephalothorax and the x direction positions of the wheel
spider increase over time. The wheel spider rotates about
11 times and moves about 0.7 m in 3 s. Here, it is found
that the wheel spider rolls at a constant speed since dis-
placement increase at a constant rate except when it starts
rolling. Figures 7, 8 and 9 show that the z direction posi-
tions repeatedly increase and decrease without decreasing
to below the height of the ground and at least one of the
parts of the wheel spider constantly touch the ground. Fur-
thermore, Figs. 10, 11 and 12 show that the wheel spider
proceeds to the positive x direction with changing the
height of each part.

Fig. 5 X direction positions of left legs (x1l: first leg, x2l: second leg, x3l:
third leg, x4l: last leg). The x direction positions of the left legs increase
over time. They move about 0.7 m with moving back and forth in 3 s
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Fig. 6 X direction positions of right legs (x1r: first leg, x2r: second leg,
x3r: third leg, x4r: last leg). The x direction positions of the right legs
increase over time. They move about 0.7 m with moving back and
forth in 3 s

From the above results, it is found that the wheel
spider goes downhill at a constant speed with rolling.
The wheel spider rolls only gravitationally since it is
not provided with an initial velocity in the simulations.
It is therefore effective in rolling locomotion by the
multi-legged robot on the flat ground to utilize gravity
skillfully.

2.3 Rolling locomotion by wheel-spider-inspired
hexapod robot

The results of motion analysis of the rolling wheel spi-
der show that the utilizing of gravity is effective in rolling
locomotion by the multi-legged robot. Rolling locomotion

Fig. 7 Z direction positions of cephalothorax and abdomen (zc:
cephalothorax, za: abdomen). The z direction positions of the
cephalothorax and the abdomen repeatedly increase and decrease.
They do not achieve the height of 5 mm or less since their radius is
5 mm

Fig. 8 Z direction positions of left legs (z1l: first leg, z2l: second leg,
z3l: third leg, z4l: last leg). The z direction positions of the left legs
repeatedly increase and decrease. They do not achieve the height of
1 mm or less since their radius is 1 mm

utilizing gravity is therefore proposed. It includes the rais-
ing of the center of gravity of the multi-legged robot and
the shifting of it forward on the overturned posture.
In this section, the mechanism of the multi-legged robot

is proposed and then the model of the multi-legged robot
with rolling locomotion is developed to realize the strat-
egy for rolling locomotion.
The controller which can generate leg trajectories

respectively in response to a multi-legged robot state is
designed.
The multi-legged robot is not developed in this paper.

The implementing and the testing of the multi-legged
robot are issues in the future.

Fig. 9 Z direction positions of right legs (z1r: first leg, z2r: second leg,
z3r: third leg, z4r: last leg). The z direction positions of the right legs
repeatedly increase and decrease. They do not achieve the height of
1 mm or less since their radius is 1 mm
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Fig. 10 Positions of cephalothorax and abdomen on
two-dimensional surface (c: cephalothorax, a: abdomen). The
cephalothorax and the abdomen proceed to the positive x direction
with changing their height

2.3.1 Mechanism of wheel-spider-inspired hexapod robot
The utilizing of gravity is adopted as the strategy
for rolling locomotion on the flat ground. The rolling
locomotion utilizing gravity includes the raising of the
center of gravity of the multi-legged robot and the shift-
ing of it forward on the overturned posture. This paper
describes the raising of the center of gravity of the multi-
legged robot as a raising movement and the shifting of it
forward as a shifting movement.
To perform rolling locomotion, a hexapod robot with

the legs having parallel linkage is proposed. The robot has
the legs assembled equiangularly and hence can perform
rolling locomotion by moving its legs in a regular pattern.
The robot has twomotors on each leg and hence canmove
its legs forward and backward and up and down as shown

Fig. 11 Positions of left legs on two-dimensional surface (1l: first leg,
2l: second leg, 3l: third leg, 4l: last leg). The left legs proceed to the
positive x direction with changing their height

Fig. 12 Positions of right legs on two-dimensional surface (1r: first leg,
2r: second leg, 3r: third leg, 4r: last leg). The right legs proceed to the
positive x direction with changing their height

in Fig. 13. The robot has the inertial measurement unit on
the body and the angular encoders on themotors to detect
and keep postures.
The legs are composed of a supporting columnar linkage

and two linkage connecting it with the body as shown in
Fig. 13b. The legs move up and down and inside and out-
side with keeping the side of each leg parallel to the side of
the body.
The robot performs rolling locomotion on the over-

turned posture. The robot locates the legs equiangularly
and near the body with grounding two legs for an initial
overturned posture as shown in Fig. 14a. When the legs
are located near the body, the overturned posture is sta-
bilized easily since the center of gravity of the body and
the legs are on the line perpendicular to the ground when
viewed from the forward as shown in Fig. 14b. The sup-
porting columnar linkages of the legs help the robot to roll
smoothly.
Utilizing the mechanism of the legs, the robot performs

the raising movement for rolling locomotion by moving
the grounding leg from inside to outside, thereby push-
ing the ground on the overturned posture as shown in
Fig. 15a. The robot performs the shifting movement by
moving the grounding leg forward and backward, thereby
swinging the body as shown in Fig. 15b.

2.3.2 Modeling of wheel-spider-inspired hexapod robot
with rolling locomotion

The model of the wheel-spider-inspired hexapod robot
with rolling locomotion is developed in the manner simi-
lar to the modeling of the wheel spider.
The robot model is developed based on following

assumptions.
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a) b)
Fig. 13Mechanism of wheel-spider-inspired hexapod robot. The robot has the legs assembled equiangularly, as shown in (a). The robot can hence
perform rolling locomotion by moving its legs in a regular pattern. The robot has two motors on each leg and hence can move its legs forward and
backward and up and down. The legs are composed of the supporting columnar linkage and two linkage connecting it with the body, as shown in
(b). The legs move up and down and inside and outside with keeping the side of each leg parallel to the side of the body

Assumption 1. The robot does not fall down while
rolling.
Assumption 2. The robot rolls without slipping on
the ground.
Assumption 3. The robot can swing, elongate and
contract its legs.

According to the assumptions, the model diagram of the
rolling hexapod robot is shown in Fig. 16 and the vari-
ables are shown in Table 2. Here the subscript b denotes
the body, αj, βj and γ j denote the first, second and third
parts of the legs, respectively and j = 1, · · · , 6 denotes
number of legs. The translational distances of the second

parts are relative distance for the first parts and the rota-
tional angles of the first parts are relative angle for the
body.
According to assumptions 1 and 2, rolling locomotion

by the robot is described on the vertical two-dimensional
surface as the rolling wheel spider. X-axis describes the flat
ground. The variables surrounded by the double line will
be definitely independent.
According to assumptions 3, it is supposed that the

legs of the robot have translational joints and rota-
tional joints, respectively. Motor torque to power parallel
linkages of legs are provided for translational joints as
force.

a) b)
Fig. 14 Overturned posture for rolling locomotion. The robot locates the legs equiangularly and near the body with grounding two legs for the
initial overturned posture, as shown in (a). When the legs are located near the body, the overturned posture is stabilized easily since the center of
gravity of the body and the legs are on the line perpendicular to the ground, as shown in (b). The supporting columnar linkages of the legs help the
robot to roll smoothly
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a) b)
Fig. 15 Raising and shifting movement for rolling locomotion. The robot performs the raising movement by moving the grounding leg from inside
to outside, thereby pushing the ground on the overturned posture, as shown in (a). The robot performs the shifting movement by moving the
grounding leg forward and backward, thereby swinging the body, as shown in (b)

The parameters in the numerical simulations of the
hexapod robot with rolling locomotion on the flat ground
are set as shown in Table 3.
Although the motion equation of the robot is derived in

the manner similar to the modeling of the rolling wheel
spider, it is difficult to derive an unconstrained motion
equation including relative distance and angle directly.
The unconstrained motion equation including relative
distance and angle is therefore derived by transform-
ing coordinates after deriving an unconstrained motion
equation letting center of gravity coordinates of the sec-
ond parts of legs be absolute position and rotational angles
of the legs be absolute angle.
Given that the absolute positions of the second parts are(
x̃βj, z̃βj

)
and the absolute angles of the first parts are ψ̃αj,

generalized coordinates x̃h are defined as

x̃h =
[
ψb, ψ̃α1, · · · , ψ̃α6, x̃β1, z̃β1, · · · ,

x̃β6, z̃β6, xb, zb, xα1, zα1, · · · ,

xα6, zα6, xγ 1, zγ 1, · · · , xγ 6, zγ 6
]T

.

(25)

The unconstrained motion equation is represented by

M̃h ¨̃xh = h̃h, (26)

where M̃h is a generalized mass matrix and h̃h is a
generalized force vector. The generalized mass matrix
M̃h and the generalized force vector h̃h are given
by

M̃h = diag
(
Ib, Il1, · · · , Il6,mβ1,mβ1, · · · ,

mβ6,mβ6,mb,mb,mα1,mα1, · · · ,
mα6,mα6,mγ 1,mγ 1, · · · ,mγ 6,mγ 6

)
,

(27)

Ilj := Iαj + Iβj + Iγ j,

h̃h =
⎡
⎣−

6∑
j=1

ταj − cbψ̇b +
6∑

j=1

(
cαj

( ˙̃
ψαj − ψ̇b

))
,

τα1 − cα1
( ˙̃
ψα1 − ψ̇b

)
, · · · , τα6 − cα6

( ˙̃
ψα6 − ψ̇b

)
,

Fβ1 sin(ψ̃α1) − ηβ1
( ˙̃xβ1 − ẋα1

)
− kβ1

(
x̃β1 − xα1

)
,

Fβ1 cos(ψ̃α1) − ηβ1
( ˙̃zβ1 − żα1

)
− kβ1

(
z̃β1 − zα1

)
− mβ1g, · · · , Fβ6 sin(ψ̃α6) − ηβ6

( ˙̃xβ6 − ẋα6
)

− kβ6
(
x̃β6 − xα6

)
, Fβ6 cos(ψ̃α6) − ηβ6

( ˙̃zβ6−żα6
)

− kβ6
(
z̃β6 − zα6

) − mβ6g, 0,−mbg,−Fβ1 sin(ψ̃α1)

+ ηβ1
( ˙̃xβ1−ẋα1

)
+kβ1

(
x̃β1−xα1

)
,−Fβ1cos(ψ̃α1)

+ ηβ1
( ˙̃zβ1 − żα1

)
+kβ1

(
z̃β1 − zα1

) − mα1g, · · · ,

− Fβ6 sin(ψ̃α6)+ηβ6
( ˙̃xβ6−ẋα6

)
+kβ6

(
x̃β6−xα6

)
,

− Fβ6 cos(ψ̃α6) + ηβ6
( ˙̃zβ6 − żα6

)
+kβ6

(
z̃β6−zα6

)

− mα6g, 0,−mγ 1g, · · · , 0,−mγ 6g

⎤
⎦
T

,

(28)

where Im and mm are the inertia moment and mass of
each part, cb and cαj are the viscosity of the body and the
first parts of the legs, ηβj is the damping coefficient of the
second parts and kβj is the spring constant of the second
parts shown in Fig. 16 The subscript m denotes the set of
indexesm = {b,αj,βj, γ j}.
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Fig. 16Model diagram of rolling wheel-spider-inspired hexapod robot. X-axis describes the flat ground. The translational distances of the second
parts of the legs dβ1, . . . , dβ6 are relative distance for the first parts (xα1, zα1), . . . , (xα6, zα6) and the rotational angles of the first parts ψα1, . . . , ψα6 are
relative angle for the body ψb . The variables surrounded by a double line will be definitely independent

Table 2 Variables of rolling wheel-spider-inspired hexapod robot
( j = 1, · · · , 6)
Center of gravity coordinates of body (m) (xb , zb)

Center of gravity coordinates of first parts of legs (m) (xαj , zαj)

Center of gravity coordinates of third parts of legs (m) (xγ j , zγ j)

Translational distance of second parts of legs (m) dβ j

Rotational angle of body (rad) ψb

Rotational angle of first parts of legs (rad) ψαj

Joint torque of first parts of legs (Nm) ταj

Force of second parts of legs (N) Fβ j

Here
(
x̃βj, z̃βj

)
and ψ̃αj are transformed into dβj and ψαj,

respectively. Given that transformed generalized coordi-
nates xh are

xh = [
ψb,ψα1, · · · ,ψα6, dβ1, · · · , dβ6, xb, zb, xα1, zα1, · · · ,

xα6, zα6, xγ 1, zγ 1, · · · , xγ 6, zγ 6
]T , (29)(

x̃βj, z̃βj
)
and ψ̃αj are represented by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x̃βj = xαj + dβj sin

(
ψb + ψαj + j−1

3 π
)
,

z̃βj = zαj + dβj cos
(
ψb + ψαj + j−1

3 π
)
,

ψ̃αj = ψb + ψαj + j−1
3 π .

(30)
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A velocity transformation matrix Ah which should
satisfy ˙̃xh = Ahẋh can thus be obtained from

Ah = ∂ x̃h
∂xh

, (31)

substituting (30) into (25).
Since ¨̃xh = Ȧhẋh + Ahẍh, a transformed unconstrained

motion equation is obtained as

M̃h
(
Ȧhẋh + Ahẍh

) = h̃h,

AT
h M̃hAhẍh = AT

h

(
h̃h − M̃hȦhẋh

)
. (32)

Given that Mh = AT
h M̃hAh and hh = AT

h (h̃h − M̃h
Ȧhẋh), (32) can be represented byMhẍh = hh.
The constraint conditions of the hexapod robot are

the definitions of positional relationships between the
body and each leg. The constraint conditions are given
by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xαj = xb + rb sin
(

ψb + j − 1
3

π

)
+ lαj sin

(
ψb + ψαj + j − 1

3
π

)
,

zαj = zb + rb cos
(

ψb + j − 1
3

π

)
+ lαj cos

(
ψb + ψαj + j − 1

3
π

)
,

xγ j =xb + rb sin
(
ψb+ j − 1

3
π

)
+( lαj+dβj+lβj+rγ j) sin

(
ψb+ψαj+ j − 1

3
π

)
,

zγ j =zb+rb cos
(

ψb+ j−1
3

π

)
+( lαj+dβj + lβj+rγ j) cos

(
ψb+ψαj+ j − 1

3
π

)
,

(33)

where lαj is the length from the body to each center of
gravity of first part of leg, lβj is the length from each center
of gravity of second part to each third part and rb and rγ j
are the radius of the body and the third parts shown in
Fig. 16.
Settling a constraint equation �h = 0 as

Table 3 Simulation parameters of wheel-spider-inspired
hexapod robot with rolling locomotion

Mass of body (kg) 1.70 × 10−1

Mass of first parts of legs (kg) 1.20 × 10−2

Mass of second parts of legs (kg) 1.30 × 10−2

Mass of third parts of legs (kg) 3.00 × 10−2

Inertia moment of body (kgm2) 7.65 × 10−5

Inertia moment of first parts of legs (kgm2) 2.00 × 10−6

Inertia moment of second parts of legs (kgm2) 2.00 × 10−6

Inertia moment of third parts of legs (kgm2) 2.10 × 10−6

Viscosity of body (Nms/rad) 1.70 × 10−9

Viscosity of first parts of legs (Nms/rad) 5.50 × 10−10

Damping coefficient of second parts of
legs (Ns/m)

5.50 × 10−12

Spring constant of second parts of legs (N/m) 1.10 × 10−9

Length from body to center of gravity of first
parts of legs (m)

1.00 × 10−2

Length from center of gravity of second parts
to third parts of legs (m)

1.00 × 10−2

Radius of body (m) 3.00 × 10−2

Radius of third parts of legs (m) 1.50 × 10−2

Gravity acceleration (m/s2) 9.81

from (33), a constraint matrix Ch can be calculated by

Ch = ∂�h
∂xh

. (35)

A constrained system is given by

Mhẍh = hh + Ch
Tλh, (36)

and an independent velocity vector under constrained
state q̇h is given by

q̇h =
[
ψ̇b, ψ̇α1, · · · , ψ̇α6, ḋβ1, · · · , ḋβ6, ẋb, żb

]T
. (37)

�h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xα1 − xb − rb sin
(
ψb + 0

3π
) − lα1 sin

(
ψb + ψα1 + 0

3π
)

zα1 − zb − rb cos
(
ψb + 0

3π
) − lα1 cos

(
ψb + ψα1 + 0

3π
)

...
xα6 − xb − rb sin

(
ψb + 5

3π
) − lα6 sin

(
ψb + ψα6 + 5

3π
)

zα6 − zb − rb cos
(
ψb + 5

3π
) − lα6 cos

(
ψb + ψα6 + 5

3π
)

xγ 1 − xb − rb sin
(
ψb + 0

3π
) − (lα1 + dβ1 + lβ1 + rγ 1) sin

(
ψb + ψα1 + 0

3π
)

zγ 1 − zb − rb cos
(
ψb + 0

3π
) − (lα1 + dβ1 + lβ1 + rγ 1) cos

(
ψb + ψα1 + 0

3π
)

...
xγ 6 − xb − rb sin

(
ψb + 5

3π
) − (lα6 + dβ6 + lβ6 + rγ 6) sin

(
ψb + ψα6 + 5

3π
)

zγ 6 − zb − rb cos
(
ψb + 5

3π
) − (lα6 + dβ6 + lβ6 + rγ 6) cos

(
ψb + ψα6 + 5

3π
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (34)
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Fig. 17 Control system schematic for wheel-spider-inspired hexapod robot with rolling locomotion. Determining the final states of target
trajectories and the activating times beforehand, the trajectories from current states to the final states are generated by the quintic interpolation
trajectory generator when the states switched. The joints of the robot are worked by applying the PID controller

An orthogonal matrix Dh to reduce degrees of freedom of
(36) is obtained as

Dh =
[

I15
−C−1

h2 Ch1

]
. (38)

Thus the motion equation of the hexapod robot without
the ground is derived as

DT
hMhDhq̈h + DT

hMhḊhq̇h = DT
h hh, (39)

by projecting the constrained system (36) on the space
constrained by DT

h and transforming the coordinates of
component vectors.
The constraint conditions depending on the ground are

given as
{
xγ j=xγ j0+rγ j

(
ψb+ψαj−(ψb0+ψαj0)

)
zγ j=rγ j

, hγ j≤0∩λγ j>0,

(40)

where hγ j = zγ j − rγ j is the height of a grounding point
and λγ j is ground reaction force. xγ j0 , ψb0 and ψαj0 are
the x-coordinate of each third part of leg and the angle
of the body and the third parts when constraints occur,
respectively.
Utilizing the constraint conditions (40), the motion

equation of the hexapod robot with rolling locomotion
can be derived by applying constraint force on the ground
to the motion equation of the hexapod robot without the
ground and considering velocity transformation due to
collision.

2.4 Design of controller
To realize rolling locomotion by the wheel-spider-inspired
hexapod robot on the flat ground, it is necessary to per-
form the raising movement and the shifting movement. In
this case, the robot stands on two legs and the center of
gravity is shifted by these legs. Legs getting off the ground
return to the initial position after shifting the center of
gravity. For that reason, each leg should behave differently.
A controller which generates a target trajectory depending

on each leg state and allows a joint to track it is therefore
designed.
The control system configuration is shown in Fig. 17.

Determining the final states of target trajectories in each
state and activating times beforehand, the trajectories
from current states to the final states are generated by
quintic interpolation when the states switched. And then,
the joints of the robot are worked by applying a PID
controller as a position servo system.

2.4.1 Target trajectory generation
Time is defined to be t. Target trajectories of position,
velocity and acceleration are given by

f (t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0, (41)
ḟ (t) = 5a5t4 + 4a4t3 + 3a3t2 + 2a2t + a1, (42)
f̈ (t) = 20a5t3 + 12a4t2 + 6a3t + 2a2, (43)

where a0, . . . , a5 are coefficients. An initial state and a final
state are defined to be xs and xf , respectively. Initial and
final time are defined to be t0 = 0 and tf , respectively. (44)
are obtained from (41) - (43).

f (0) = a0 = xs, ḟ (0) = a1 = ẋs, f̈ (0) = 2a2 = ẍs.
(44)

a0, . . . , a2 are obtained by (44). Furthermore, a3, . . . , a5 are
obtained from⎡

⎣ a3
a4
a5

⎤
⎦ = A−1

⎡
⎣ xf − ẍs

2 t
2
f − ẋstf − xs

ẋf − ẍstf − ẋs
ẍf − ẍs

⎤
⎦ ,

A :=
⎡
⎢⎣

t3f t4f t5f
3t2f 4t3f 5t4f
6tf 12t2f 20t3f

⎤
⎥⎦ , (45)

when t = tf . A target state xr(t) is obtained by applying
a0, . . . , a5 to (41) - (43) within t0 ≤ t ≤ tf . When 0 �= ta ≤
t ≤ tb, A target state is obtained from xr(t) = f (t− ta) and
ta ≤ t ≤ tb after coefficients of trajectories were obtained
for t0 = 0 and tf = tb − ta.
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Table 4 Final states of target trajectories and activating times

State Target distance Target angle Activating
(m) (deg) time (s)

Grounded
forward leg

3.50 × 10−2 −25.0 5.00 × 10−1

Grounded
backward leg

5.00 × 10−3 0.00 5.00 × 10−1

Ungrounded
leg

1.50 × 10−2 0.00 1.00

2.4.2 PID controller
The PID controller is designed to let the joints track the
target trajectories. Let an error between a target joint state
xr and a current joint state x be e = xr−x and the position
servo system is designed as

τ = Kpe + Ki

∫
edt + Kdė, (46)

where Kp, Ki and Kd denote the proportional, integral and
differential gain, respectively. (46) calculates input and
allows the joints to track the target trajectories.

3 Results and discussion
3.1 Simulation of rolling locomotion by

wheel-spider-inspired hexapod robot on the flat
ground

The rolling locomotion utilizing gravity by the wheel-
spider-inspired hexapod robot on the flat ground is simu-
lated to verify the effectiveness of the proposed controller.
The initial rotational angles of the body and the legs are
set at ψb = 30.0 and ψαj = 0.00 deg and initial transla-
tional distances of legs are set at dβj = 1.50 × 10−2 m.
The hexapod robot starts rolling locomotion from a state
standing on two legs.
The final states of target trajectories and the activating

times are set as Table 4. Here the initial and final states
of velocities and accelerations are 0. The PID gains of the
translational and rotational joints are shown in Table 5.
Simulation results are shown in Figs. 18, 19, 20, 21, 22

and 23. Figure 18 shows the angle of the body, Fig. 19
shows the x direction positions of the body and the third
parts of the legs, Fig. 20 shows the z direction positions of
the body and the third parts of the legs, Fig. 21 shows the
positions of the body and the third parts of the legs on the
two-dimensional surface, Fig. 22 shows the angles of
the legs and Fig. 23 shows the translational distances of the
legs.

Table 5 PID gains of translational and rotational joints

Joint Proportional gain Integral gain Differential gain

Translational joint 3.50 × 103 1.50 × 103 40.0

Rotational joint 15.0 5.00 6.00 × 10−2

Fig. 18 Rotational angle of body. The rotational angle of the body
increases over time. The robot rotates about 2.32 times in 10 s

Figures 18 and 19 show that the angle of the body and
the x direction positions of the robot increase over time.
The robot rotates about 2.32 times and moves about 1.26
m in 10 s. Here, it is found that the robot rolls at a con-
stant speed since displacement increase at a constant rate
except when the robot starts rolling. Figure 20 shows that
the z direction positions repeatedly increase and decrease
without decreasing to below the height of the ground
except when legs get off the ground. The exceptions when
the legs get off the ground are due to push the ground
with the legs. Figure 21 shows that the robot proceeds to
a positive x direction with changing the height of each
part.
Figures 21, 22 and 23 show that the raising movement

and the shifting movement can be performed by tracking

Fig. 19 X direction positions of body and third parts of legs (xb: body,
xlj: third parts). The x direction positions of the body and the third
parts of the legs increase over time. They move about 1.26 m with
moving backward and forward in 10 s
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Fig. 20 Z direction positions of body and third parts of legs (zb: body,
zlj: third parts). The z direction positions of the body and the third
parts of the legs repeatedly increase and decrease. The third parts do
not achieve the height of 15 mm or less except when the legs get off
the ground since their radius are 15 mm

the trajectories which is generated in response to the leg
states.
From the above results, the proposed controller is effec-

tive in realizing the proposed strategy for rolling loco-
motion and the wheel-spider-inspired hexapod robot can
achieve rolling locomotion.

4 Conclusions
This paper aimed to realize rolling locomotion by the
wheel-spider-inspired hexapod robot on the flat ground.
To realize rolling locomotion by the robot, the wheel
spider rolling on the slope was modeled and analyzed
through simulations. The model of the rolling wheel spi-
der is developed by applying constraint force on the

Fig. 21 Positions of body and third parts of legs on two-dimensional
surface (b: body, lj: third parts). The body and the third parts of the
legs proceed to the positive x direction with changing their height

Fig. 22 Rotational angles of legs (pslj: legs). The rotational angles of
the legs move periodically toward the target angles from 2 s later

ground to the model of the wheel spider without the
ground and considering velocity transformation due to
collision. The mechanism of the robot and the rolling
locomotion utilizing gravity which includes the raising
of the center of gravity of the robot and the shifting
of it forward on the overturned posture were proposed
based on the results of motion analysis of the wheel spi-
der and the robot model was developed. The controller
which can generate the leg trajectories respectively in
response to a robot state was designed. Finally, the rolling
locomotion by the robot on the flat ground was simu-
lated applying the proposed controller. As a result, it was
found that the proposed controller is effective in realizing
the proposed strategy for rolling locomotion. In conclu-
sion, it was verified through numerical simulations that

Fig. 23 Translational distances of legs (dlj: legs). The translational
distances of the legs move periodically toward the target distances
from 2 s later
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the wheel-spider-inspired hexapod robot can achieve the
rolling locomotion utilizing gravity.
The proposed controller has the control issue that it

does not consider the influence of touching the legs of
the robot to the ground. Trajectory tracking errors hence
occur when the legs are touching the ground. The design-
ing of a controller considering the influence of the ground
and the implementing and testing of the wheel-spider-
inspired hexapod robot are issues in the future.
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